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     Dear Reader, 

     We are inviting contributions to the following rubrics: 

• Research highlights (annotations) presenting the projects pursued by the members of the Consortium. 

• Short regular and invited papers. 

• Proposals for collaborative research work. 

• News from the participating institutions. 

• Information about conferences, symposia, workshops, seminars. 

• Programs and frameworks for an exchange of visits and mobility of researchers. Job opportunities 

(especially for young researchers, e.g. postdoctoral positions, specializations, internships). 

• Annotations of books, conference proceedings, software and internet resources. Additions to the list of   

the recent scientific publications and conference reports at the website of the Consortium 

(http://fir.ufukui.ac.jp/Website_Consortium/publist.html ). 

• Information and announcements about awards and nominations. 

• Short presentations of laboratories and research groups belonging to the participating institutions. 

      Please submit your contributions to the Newsletter as well as requests for information to: 

 

Professor Masahiko Tani                                                                          Dr. Svilen Sabchevski 

Director of FIR UF – Facilitator of                                                          Editor of the website and the Newsletter 

the International Consortium                                                                    Institute of Electronics of the Bulgarian 

FIR UF                                                                                                      Academy of Sciences   

tani@fir.u-fukui.ac.jp                                                                                sabch@ie.bas.bg  
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Control of sub-terahertz gyrotron frequency by modulation of the anode voltage  

 

A.P. Fokin, A.I. Tsvetkov, V.N. Manuilov, A.S. Sedov, and M.Yu. Glyavin 

Institute of Applied Physics of the Russian Academy of Sciences, N. Novgorod, Russia 

 

     Gyrotrons are well known as the powerful radiation sources in sub-THz and THz frequency ranges. 

Together with power and efficiency, for some applications, for instance, those associated with spectroscopy and 

diagnostics of various media, a CW oscillation regime with narrow radiation spectrum and smooth wideband 

oscillation frequency tuning are highly sought for. In this case, the gyrotron output power would still be several 

orders higher than the power of classical BWOs and solid-state oscillators thus uncovering brand new 

possibilities for research. Thus, in order to satisfy the growing demands of modern applications, it is necessary 

to pay more attention to the methods of frequency control in gyrotrons. 

     The active methods of frequency control include several relatively slow methods like variation of magnetic 

field, cavity temperature, and cavity radii as well as faster methods of voltage variation on the electrodes the 

electron-optic system, namely accelerating voltage, cavity voltage (in the gyrotrons with electron energy 

recovery) or modulation-anode voltage in triode-type magnetron injection guns. The latter seems to be most 

reasonable since the voltage is varied at the isolated electrode, the capacitance of which is relatively small with 

respect to other electrodes of the electron-optical system and is usually about tens of picofarad. Moreover, the 

mod-anode current is low and so the corresponding power supply can be small, simple and cheap. A number of 

experiments (including FIR UF and IAP RAS groups) with gyrotrons of different frequencies demonstrated its 

simplicity, reliability, modulation frequency up to hundreds of kHz and paved the way for record frequency 

stability of the gyrotron. The objective of this report is to compare theoretical calculations with experimental 

results in order to draw a conclusion about the existence of a theory that can accurately describe the process of 

frequency control by variation of modulation-anode voltage. 

     The theory of frequency pulling in gyrotrons is based on the basic theory developed by L. A. Weinstein with 

V. A. Solntsev, who considered the excitation of oscillations in a resonator excited by an electron beam with 

the current density     Re i tj t j e   and introduced the complex power of beam-wave interaction

act imP P iP  . In terms of components of such complex power, equations describing the stationary oscillations 

in any resonator can be reduced to the equation describing the balance of active powers and the equation 

describing the reactive power. The first one determines the amplitude of oscillations excited by an electron 

beam in a resonator with a given Q-factor; the second one (describing the balance of reactive powers) 

determines the shift of the oscillation frequency with respect to the real part of the complex eigenfrequency of a 
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cold cavity / 2s s s si Q      ( s  is the mode index), i.e. the frequency pulling effect. In notations adopted in 

the gyrotron theory, the same effects can be described by using the susceptibility of an electron beam to the 

electromagnetic field of a resonator i     . The relation between this susceptibility and the complex 

power can be given as: 
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In (1), I  is the normalized beam current parameter, W  is the microwave energy stored in a resonator. In the 

notations adopted in the gyrotron theory, corresponding balance equations can be given as: 
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Note that in the framework of this theory the susceptibility   depends on three dimensionless parameters only: 

the cyclotron resonance mismatch   , the normalized length of the interaction space   and the normalized 

amplitude of oscillations in the resonator F ; the latter, in accordance with Eq. (2) depends, in turn, on the 

beam current parameter I . For our treatment, it is important that all three parameters depend on the 

components (orbital and axial) of the electron velocity. In particular, and possibly the most important, is the 

dependence in the transit angle   0 / zs L v    , which is the product of the mismatch and the normalized 

interaction length    . Therefore, the variation in the modulation-anode voltage, which is considered below, 

causes the variation in the transit angle that has a strong effect on the electron bunching and resulting gyrotron 

output frequency and power. 

     For the method of modulation-anode voltage control, the electron energy, which is determined by the 

accelerating voltage (cathode-cavity potential), remains constant, and a change of the mod-anode potential 

affects only on an electrons pitch-factor g (relation between orbital and axial velocities of electrons). Therefore, 

in order to calculate the frequency shift, it is important to know the components of electron velocity with high 

enough accuracy and utilize the adequate model of beam-wave interaction (the one that takes into account the 

greatest number of effects and at the same time with reasonable calculation time). The authors use a "classical" 

approach – divide the problem into two sub-problems that can be solved independently using relatively simple 

models for which the computation time is orders of magnitude less than for the packages described above. The 

first problem is the calculation of the parameters of the electron beam formed in the axially symmetric 

magnetron-injection gun with a varying mod-anode voltage and the second is the calculation of the interaction 

of the resulting electron beam with the electromagnetic field in the gyrotron cavity in a self-consistent model of 

a gyrotron with non-fixed field structure. The numerical simulation and subsequent comparison with the 

experiment was made for a real tube with a frequency of 263 GHz and an output power of 1 kW, which was 

developed at IAP RAS. 



     The calculation of electron-wave interaction was made by using the self-consistent steady-state single-mode 

equations. The model with a non-fixed longitudinal RF-field structure f(z) takes into account the electron 

velocity and guiding center spread, non-uniform magnetic field and the real resonator profile. The transverse 

drift of electron orbit centers, RF space charge and re-radiation of the operating mode into modes with different 

radial indexes were not taken into account since at optimal gyrotron parameters their influence is negligibly 

small. The calculated value of the pitch-factor is substituted into the energy conservation law and the 

corresponding values of electrons oscillatory 0p p   and longitudinal 0zz pp   momentums at the entrance of 

the cavity were obtained. These values are then used as initial ones for microwave field calculation in the 

presence of electron beam. As a result, the generation frequency and total gyrotron efficiency for a set of 

considered values aU  and magnetic fields were found. The calculated dependencies of the operating gyrotron 

frequency and efficiency on the mod-anode voltage variation and magnetic field in the cavity region (cyclotron 

resonance mismatch) are shown in Fig.1, 2. 

  

Fig. 1 and 2 Calculated dependencies of the gyrotron operating frequency (left) and gyrotron 

efficiency (right) on the magnetic field and anode voltage. 

     It should be noted that for regimes with high interaction efficiency (in Fig.2 this region corresponds to B 

close to 9.6 T) the influence of beam pitch factor on the frequency of microwave radiation is rather low 

( af U   = 1.3 MHz/kV), while the overall efficiency of the gyrotron varies quite a lot ( 5.1aU   %/kV). 

The highest sensitivity of frequency to the variation of mod-anode potential af U   = 30 MHz/kV is 

predicted at high magnetic fields (in Fig. 1 this region corresponds to B close to 9.7 T), for regimes with low 

interaction efficiency. As it follows from numerical simulation, the optimal regime for spectroscopic  gyrotron 

would be not the maximum efficiency point, but the middle of the generation zone, since it offers greater 

frequency tuning and less output power modulation, as well as a reasonable level of output power about 100 

watts. 

     To verify the obtained results, measurements of the radiation frequency versus modulation-anode voltage 

were performed. Keysight N9010A spectrum analyzer with a harmonic mixer in the range 230-320 GHz 

(produced in Research Institute of Semiconductor Devices) was used (Fig. 3). The experiments were performed 

at the accelerating voltage of 15 kV and a beam current of 0.1 A to comply with the numerical simulation 

conditions. The experiment confirmed the dependence of frequency sweep bandwidth on the operating regime 



of the gyrotron with experimentally measured sensitivity of the frequency to the modulation-anode potential 

variation ranging from 5 to 30 MHz/kV for minimal and maximal operating magnetic fields. Acquired 

dependencies of gyrotron frequency on the mod-anode voltage are in a good agreement with the results of the 

numerical simulation. A comparison of the obtained experimental dependency with numerical calculations for a 

fixed magnetic field equal to 9.68 T is presented in Fig. 4. The observed discrepancy between theoretical 

predictions and experiment    values is about 
53 10 , which is an order of magnitude smaller than in 

previous work (I.Antakov, et al., Int. J. Infrared Millimeter Waves, 14, 5, 1001–1015, 1993). 

 

Fig.3 Scheme of the gyrotron, power supply connections and measurement system 

 

Fig.4. Comparison of the theoretical and experimental results for frequency shift caused by the anode voltage 

variation for a fixed magnetic field (initial value of mod-anode voltage Ua = 13 kV, B = 9.68 T). 

     The results of numerical simulation of the gyrotron frequency and efficiency in the simple two-step scheme 

are in agreement with the experimentally observed dependencies of the frequency shift on the modulation-

anode voltage variation and the generation regime. Observed discrepancy between theoretical predictions and 

experimental results is significantly smaller than in earlier works. It proves the credibility of the simple 

theoretical approach to calculation of the gyrotron frequency and power as functions of technical parameters, 



especially anode voltage, and allows the use of the described method for the development of frequency control 

systems for modern high-frequency gyrotrons. 

More detail: A.P. Fokin, at al. Rev. Sci. Instrum. 90, 124705 (2019); https://doi.org/10.1063/1.5132831. 

 
   
 

 

 

 
 

 
The Institute of Applied Physics of Russian Academy of Sciences announces that the 11th International 

Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications” will be held on July 5–10, 

2020 on a river cruise starting and ending in Nizhny Novgorod, Russia. 

 

 
The side events at the workshop include the 32nd Joint Russian-German Meeting on ECRH and Gyrotrons and 

a school on high power microwave vacuum electronics for young scientists and PhD students. Traditionally, the 
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workshop is held aboard a comfortable cruise riverboat. This provides a unique opportunity for the participants 

to take a closer look at Russian history and culture. A sightseeing program on the route, a special program for 

accompanying persons, and a set of social events are scheduled. 

 

For more detail visit the website of the Workshop.  

 

For more conferences to be held in 2020 visit the preceding issue Newsletter #13. 

 

 

  

 

 

Happy 55th Birthday to Professor Mikhail Glyavin 

 

 
 

M. Glyavin was born in Nizhny Novgorod, Russia, on 14 February 1965. He received the Ph.D. degree and Dr. 

Sci. degree in physics from the Institute of Applied Physics, Russian Academy of Sciences, in 1999 and 2009, 

respectively. After graduation of the Politechnical Institute, Gorky, USSR, in 1988, he joined the Institute of 

Applied Physics of the Russian Academy of Sciences (IAP-RAS, where he is engaged in the development of 

high-power gyrotrons for nuclear fusion and other applications. His dissertation was focused on studies of 

gyrotrons, development of gyrotron based systems for technological applications and more specifically on 

methods for increasing the gyrotron efficiency and mastering of THz band. From 1999 up to now, at intervals, 

he was a Visiting Professor at the FIR FU Center, Fukui, Japan. Currently, he is a Deputy Director of Research 

at IAP-RAS, an Associate Professor with Nizhny Novgorod State University, Nizhny Novgorod, Russia, and a 

Head of the Laboratory of microwave treatment of materials at IAP-RAS. 

M. Glyavin is a leading specialist and worldwide renowned scientist in the fields of radiophysics and physical 

electronics. His research interests are in the field of the theoretical and experimental investigations of various 

gyro-devices, including gyrotrons and their application to materials processing and diagnostic of various media. 

Among his remarkable results are the following: a study of the processes of interaction of helical electron flows 

with eigenmodes of various electrodynamic systems and the proposal of new principles and design of various 
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gyro-devices; development of a series of technological complexes for microwave processing of materials with 

increased efficiency and functionality; the formation of the foundations of a new promising direction - powerful 

sources of radiation in the terahertz frequency range. Under his leadership and with his direct participation, 

record-breaking frequencies, powers and spectral characteristics of the radiation of gyro devices were achieved 

both in pulsed and continuous modes of generation; pioneering work on initiating a localized gas discharge, 

experiments on gas spectroscopy with record sensitivity were performed. 

M. Glyavin conducts teaching work, supervising graduate students and students, and lecturing at the University 

of Nizhniy Novgorod N.I. Lobachevsky. He manages the collaborative research with the Research Center for 

development of the Far-Infrared Region at the University of Fukui (FIR UF) in Japan (FIR FU, Fukui, Japan), 

and the University of Maryland in the US. He is an active contributor to the research carried out in the 

framework of the International Consortium for Development of High-Power THz Science and Technology. 
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Powerful CW Sub-THz Large Orbit Gyrotron (LOG) for NMR spectroscopy 

 
On 23 January 2020, the site Scientific Russia published an article that describes a new Large Orbit Gyrotron 

(LOG) developed at the Institute of Applied Physics of the Russian Academy of Sciences (IAP-RAS). This 

device has demonstrated a stable generation in a CW regime at frequencies of 0.39 and 0.26 THz and output 

powers of 0.4 and 0.9 kW, respectively. The well-known advantages of the LOG are high mode selectivity 

(since only cavity modes with an azimuthal index that is equal to the harmonic number of the cyclotron 

resonance can be excited effectively) and an inherent high-harmonic operation that reduces the necessary 

intensity of the magnetic field inversely proportionally to the harmonic number. In contrast to the conventional 

gyrotrons that utilize magnetron injection guns (MIG) that form helical electron beams (in which the individual 

electron orbits are helices following the magnetic field lines), the LOGs utilize electron-optical systems (EOS) 

that produce axis-encircling (aka uni-axial) electron beams. In the latter case, the electrons gyrate around the 

axis of symmetry on circles with larger Larmor radius (comparable to the radius of the resonant cavity) and 

hence the name – Large Orbit Gyrotron. These two configurations are illustrated in Fig. 1.  

 

Fig. 1 Resonant structure of LOG with axis-encircling electron beam (a) and a conventional gyrotron with poly-

axial (helical) electron beam (b). Image courtesy Scientific Russia. 

 

Currently, most of the DNMR-DNP spectrometers utilize radiation sources operating at frequencies of 0.263, 

0.395 and 0.527 THz. Such are, for example, the devices developed by Bruker BioSpin company in 

collaboration with CPI (USA). Wave beams with the mentioned frequencies are delivered by gyrotrons 

operating at second harmonics of the cyclotron resonance and having superconducting magnets with maximum 

intensities of 5, 7, and 10 T, respectively.  The concept of LOG allows to produce radiation at these three 

frequencies using the same EOS and collector and changing only the cavity (and therefore the operating mode) 

and the output system, while the electron-optical system and the collector remain the same. The new LOG 

developed at IAP-RAS is built using one 5 T cryomagnet and can operate selectively at the 2nd, 3rd and 4th 

cyclotron harmonics. For the first time in the world, CW operation of LOG has been demonstrated at a 

frequency of 0.394 THz at the 3rd harmonic of the cyclotron frequency (Fig. 2) operating at relatively low 

electron energy (30 keV) and a weak magnetic field (about 5 T). 
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Fig. 2 Photo of the CW LOG (left panel), oscillograms of the signals observed at the moment of the startup and 

during the first one and a half minutes of operation (upper right panel), and comparison of calculated and 

measured intensities of the output beam (lower right panel).   Image courtesy Scientific Russia. 

 

For more details see the original paper: Yu.K. Kalynov, V.N. Manuilov, A.Sh. Fiks, and N. A. Zavolskiy, 

“Powerful continuous-wave sub-terahertz electron maser operating at the 3rd cyclotron harmonic,” Appl. Phys. 

Lett., vol. 114 (2019) 213502. DOI:10.1063/1.5094875. (link) 

 

A new approach for injecting powerful microwaves into fusion plasma 

 
Powerful microwave radiation produced by gyrotrons is used for electron cyclotron resonance heating (ECRH) 

and current drive (ECCD) of magnetically confined plasma in fusion reactors (e.g. tokamaks). For the first time 

in DIII-D tokamak, the researchers from the National Fusion Facility in San Diego have measured significantly 

higher off-axis ECCD efficiency (more than twice higher than that obtained previously) using a novel top 

launch geometry. It is expected that such a breakthrough will facilitate the development of more efficient and 

compact fusion power plants. 

 

For more detail please visit the following sources:  

1. Higher Off-Axis Electron Cyclotron Current Drive Via 'Top Launch (link)  

2. Taking new angle to enable more efficient, compact fusion power plants (link) 

3. Top launch ECCD enabling higher off-axis current drive for steady-state operation of burning plasma 

tokamaks (link) 

 

World record acceleration: Zero to 7.8 billion electron volts in 8 inches 
 

An article published on 21 October 2019 in PhysOrg of the American Physical Society reports that a team at 

Berkeley Lab's BELLA Center doubled the previous world record for energy produced by laser plasma 

accelerators, generating electron beams with energies up to 7.8 billion electron volts (GeV) in an 8-inch-long 

plasma (20 cm). This would require about 300 feet (91 m) using conventional technology. For more detail see 

the original paper: J. Gonsalves et al, “Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a 
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Laser-Heated Capillary Discharge Waveguide,” Phys. Rev. Lett. 122, 084801 (2019). DOI: 

10.1103/PhysRevLett.122.084801. (link)  

 

A new way for detection of terahertz electromagnetic waves 
 

A team of physicists at the University of California has discovered an electrical detection method for terahertz 

electromagnetic waves, which could help miniaturize the detection equipment on microchips and enhance 

sensitivity according to a paper published in Nature (Li J., Wilson C.B., Cheng R. et al. “Spin current from sub-

terahertz-generated antiferromagnetic magnons, Nature (2020). DOI:10.1038/s41586-020-1950-4. link). The 

new method is based on a magnetic resonance phenomenon in antiferromagnetic materials that are ubiquitous 

and more abundant than ferromagnets. Moreover, many ferromagnets (e.g. iron and cobalt) become 

antiferromagnetic when oxidized. Such materials are considered very promising for the development of various 

spin-based nanoscale device applications. In their experiments, the researchers have generated a spin current in 

an antiferromagnet and detected it electrically by pumping up a magnetic resonance in heterostructures of a 

uniaxial antiferromagnetic Cr2O3 crystal and a heavy metal (Pt or Ta in its β phase) using terahertz radiation 

with a frequency of 0.24 THz. According to the authors, their findings reveal the unique characteristics of 

magnon excitations in antiferromagnets and their distinctive roles in spin–charge conversion in the high-

frequency regime. 

 

A popular description of this new method and its implications for the electronics is given in an article published 

in SciTech Daily and another one in Nano Werk. 

 

 

Breakthrough in terahertz waves 
 

Hamamatsu Photonics has succeeded in producing terahertz waves at a wavelength of 450 μm, which is the 

world’s longest wavelength available from a single semiconductor laser operating at room temperature. To 

achieve this breakthrough, the firm has developed long-wavelength mid-infrared quantum cascade laser, in 

which it designed the laser structure based on research and analysis results of the terahertz wave generation 

principle. Results from this research will be useful in applications such as quality testing and non-destructive 

inspection of drugs and foods containing components that absorb electromagnetic waves in the sub-terahertz 

range as well as submillimeter astronomy and high-speed and high-capacity communication over short 

distances. For more detail visit the article presented at the site of Hamamatsu Photonics following the link. 

 

Researchers generate terahertz laser with nitrous oxide (laughing gas) 
 

An article in the MIT News reports that researchers from MIT, Harvard University, and the U.S. Army have 

built a compact device, the size of a shoebox that produces a terahertz laser whose frequency they can tune over 

a wide range. The device is built from commercial, off-the-shelf parts and is designed to generate terahertz 

waves by spinning up the energy of molecules in nitrous oxide, or, as it's more commonly known, laughing gas. 

Nitrous oxide is used to illustrate the broad tunability over 37 lines spanning 0.251 to 0.955 terahertz, each with 

kilohertz linewidths. The analysis of the researchers shows that laser lines spanning more than 1 terahertz with 

powers greater than 1 mW are possible from many molecular gases pumped by quantum cascade lasers. For 

more information see the original paper (Paul Chevalier, et al “Widely tunable compact terahertz gas lasers,” 

Science, vol. 366, Issue 6467 (2019) 856-860. DOI:10.1126/science.aay8683) published in the journal Science. 
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