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Abstract. The design of a magnetron-injection gun (MIG) which is appropriate for a CW 3-rd 

harmonic gyrotron with a frequency of 1.185 THz and the output power about 100 W, intended for 

DNP/NMR spectroscopy applications is described. To improve the mode selection, several 

electron-optical schemes are investigated. The MIG allows using both single-beam and double 

beam schemes of the gyrotron operation with two different operating modes. Requirements for the 

electron beam parameters are formulated. The design of the triode MIG forming two generating 

beams with a quality suitable for a third harmonic operation has been accomplished and optimized. 

A specific feature of the designed MIG is the possibility to form either two beams or one beam 

using the same electrodes configuration and different number of emitting rings. The proposed MIG 

design is insensitive to small misalignment and reasonable manufacturing inaccuracy. A key 

advantage of the design is that it allows improving the mode selection utilizing an electron beam 

with increased velocity spread as proposed in this study. It is shown that it is possible to form two 

beams with practically equal and quite high pitch-factors in all range of operating currents and 

simultaneously small enough coefficient of reflection from the magnetic mirror despite the large 

enough value of the velocity spread. 

 
Key words: gyrotron, terahertz range, cyclotron harmonic, mode selection, helical electron beam, double-

beam magnetron-injection electron gun, numerical simulation.  

 

    1. Introduction 

    The terahertz frequency range (0.1—10 THz) has a number of specific features that make it very attractive 

for a wide range of fundamental and applied research in the fields of physics, chemistry, biology and medicine 

[1–3]. In particular, terahertz waves are promising for diagnostics and spectroscopy of various media, including 

electron paramagnetic resonance (EPR) and high-resolution nuclear magnetic resonance (NMR) methods [3]. 

Unfortunately, the modern sources of coherent THz radiation have serious limits with respect to the output 

power. 

    One of the most promising tubes in the terahertz frequency range are the gyrotrons [4 – 6]. In comparison 

with other sources of THz radiation they have relatively small weight, size, and cost and power sufficient for 

many of the mentionad applications. Recently the project of a CW gyrotron operating on the third cyclotron 

harmonic (15 T magnetic field intensity, 1.2 THz frequency with a power about several Watts) on either TE15,6 

or TE21,4 cavity modes was suggested and optimized [7]. It is based on the utilization of the conventional 

single-beam gyrotron scheme. However, the transition towards the THz frequency range sharply increases the 

density of the modes within the cyclotron frequency band. 
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    The excitation of high cyclotron harmonics needs special methods of mode selection for suppression of the 

fundamental harmonic mode which has a lower starting current. Usually the gyrotrons use electrodynamic 

(complex cavity) or electronic (multi-beam, axis encircling beam, etc.) methods to improve the mode selection. 

For the case of high harmonic number excitation the parasitic modes are far from the cut-off frequency. It 

means that they are travelling waves and are very sensitive to the velocity spread. To suppress the spurious 

travelling modes, the scheme based on the helical electron beam (HEB) with a high (30 — 40%) oscillatory 

velocity spread was suggested [8]. It should be noted that an increase in the velocity spread can somewhat 

worsen the efficiency of the gyrotron. This, however, is not a critical problem for spectroscopy and diagnostic 

application that require small microwave power.  

    Another way to ensure single-mode operation with high enough microwave power (which needs high 

electron beam current) is to use multi-beam schemes [9 – 12]. Recently, in the common proof of principle 

experiments of Russian and Japanese teams, the efficiency of this approach for the second cyclotron harmonic 

operation with two generating HEBs was confirmed [13]. This made it possible to obtain power of about 10 W 

with a frequency of 0.79 THz using a commercially available and relatively inexpensive 15 T superconducting 

magnet installed in the experimental setup of FIR FU Center. Thus, to increase the reliability of the single-

mode operation with such a high frequency it is better to combine both mentioned above approaches and make 

the universal gun design suitable for both the single-beam or double beam operation with high value of the 

velocity spread and simultaneously provide a stable electron beam with a high current. 

    Below the design of the double-beam triode magnetron-injection gun (MIG) forming two generating beams 

with the quality suitable for microwave generation with the frequency   3c at the third cyclotron harmonic, 

is suggested and optimized. In contrast to the traditional design [14], an operation at relatively low voltage 

(about 20 kV) imposed by the limitations of the currently available high-voltage power supply is analyzed. The 

specific feature of the gun is that it allows forming either two beams or one beam using the same gun geometry. 

In the last case, it is provided simply by removing the additional emitter from the cathode surface. The 15 T 

cryomagnet with a diameter of a warm bore of 52 mm (made by JASTEC, Inc.) installed in University of Fukui 

(FIR UF Center) will be used. Realization of the stable single-mode CW generation at the third cyclotron 

harmonic will make it possible to create a unique terahertz radiation source for DNP/NMA spectroscopy and a 

number of other promising applications. 

    2. Selection of the injection radii of the electron beams 

    According to the detailed analysis performed in the previous work [7], the gyrotron can use either TE-15,6 or 

TE21,4 modes as the operating ones. The coupling factors for such modes are presented in Fig. 1. 

 

Fig. 1. Coupling factors of the electron beam to the eigenmodes of a cylindrical cavity vs. the electron beam injection 

radius Rbeam: TE+21,4 (harmonic number s = 3), TE-15,6 (s = 3), TE8,5 (s = 2). The cavity radius Rcavity is equal to 1.488 mm. 

 



    Below, the two versions of a gyrotron are preliminary considered: a conventional single-beam gyrotron and a 

double-beam gyrotron. In the first case, for the injection radius of 0.85 mm, the coupling factor for both 

operating modes is significantly higher than that for the parasitic ones TE±8,5. In the second case, there is also an 

external HEB with a radius Rbeam = 1.07 mm. This beam has a fairly strong coupling to the parasitic mode, 

however, its use together with the main internal HEB does not violate the selective excitation of the operating 

mode (at a reasonable value of the current of this beam) and makes it possible to increase the total current, 

allowing increasing the output power of the tube. 
 

    3. Evaluation of the admissible spread of the electron beam injection radii. 

 

    One of the parameters that must be known before starting the design of the MIG is the spread of the guiding 

centers in the HEB. It defines, to some extent, the electron beam current and possibility to manufacture the 

emitter ring with a good enough accuracy. We estimated the minimum values of the starting currents in Ist min 

(H) curve, where H is the intensity of the magnetic field for the operating mode TE15,6, and for the main 

parasitic mode TE8,5 as a function of the thickness Rbeam of the electron beam. In these calculations, we 

considered the case of asingle HEB with a radius Rbeam = 0.85 mm. 

    For the simplest model with a fixed longitudinal structure of the microwave field f(z) = sin(πz/L) (where L is 

the effective length of the gyrotron cavity), in case when the electron beam has a finite thickness Rbeam, the 

starting current can be calculated using a generalization of the well-known formula [5,15]: 

, 

, 

, 

where θ = (ω–sωc)L/v|| is the transit angle, ωc = eH0/mcγ0 is the unperturbed cyclotron frequency, 

γ0 = 1 + U0[kV]/511 is the relativistic Lorentz factor, U0 is the accelerating voltage, Q is the quality factor of the 

gyrotron cavity, β⊥,|| = v⊥,||/c are the normalized transverse and longitudinal velocities, μ= πgβ⊥0L/λ is the 

normalized interaction length, and λ being the radiation wavelength. 

    The results of the calculation are shown in Fig. 2. 

 

Fig. 2. Minimum value of the starting current Ist min as a function of the thickness of the electron beam for operating mode 

TE-15,6 and for the parasitic one TE8,5, expressed in wavelengths /Rbeam.The same value of /Rbeam corresponds to the 

different values of the magnetic field strength. 
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With an increase in the HEB thickness, the minimum value of the starting current for the spurious TE8,5 

modes dramatically decreases (dashed and dash-dotted lines in the figure), and simultaneously, the starting 

current of the operating one TE-15,6 rapidly increases (Fig. 2). Thus, it seems reasonable to choose a beam 

thickness of about /5 accepting a compromise: on the one hand, a further decrease in the beam thickness does 

not significantly improve the situation; on the other hand, this value seems realistic from the point of view of 

the implementation of the electron-optical system. 

 

   4. Preliminary adiabatic estimations of the MIG parameters  

 

    The gyrotron is based on the same magnetic system as in the project of 0.79 THz double-beam gyrotron at 

the second cyclotron harmonic [16]. To ensure high coupling of the two beams with the RF field and good 

enough gyrotron efficiency the following HEBs parameters were chosen: Rin = 0.854 mm (0.85 mm), 

Rext = 1.065 mm (1.07 mm), gin =gext = 1.3, vin =vext  30 – 40%, Iin , Iext  0.8 A. Here the indexes “in” and 

“ext” correspond to the internal and external beams, respectively and the values in brackets correspond to the 

TE21,4 mode. The spreads of the guiding centers Rin, Rext should be less than /5. Here Rin, Rext are partial 

beams radii, gin, gext – pitch-factors, Rin, Rext – spread of the guiding centers, Iin, Iext – currents of the beams. 

    The specified values of injection radii for both operating modes are very close: the difference in 

corresponding injection radius is less than /50, i.e. 10 times smaller than the admissible value of the guiding 

centers spread. This allows to design an universal scheme of the double-beam MIG suitable for utilizing in the 

same gyrotron operating at both specified above modes simply by substituting the corresponding cavity inside 

the tube (to keep the frequency value of about 1.185 THz for operating mode TE21,4 the cavity radii must be 

equal to 1.492 mm). 

A relatively low [17] value of an accelerating (cathode) voltage U0 should be preferred in order to 

simplify the gyrotron power supply system. On the other hand, to satisfy the cyclotron resonance condition: 
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for a fixed maximum value of the magnetic field intensity H which is not higher than 15 T we need to limit the 

value of the accelerating potential to approximately 32 kV. Hence, below we consider a version of the beam-

shaping system with a total accelerating voltage of 30 kV and maximum beam current of 3 A (total in two 

HEBs), which are estimated to guarantee power of about a hundred watts at least. For a more flexible control of 

the parameters of the partial HEBs, we considered a triode scheme of the MIG with an anode voltage Ua ≈ 12 

kV.  

Preliminary analytical estimation of the electric regime and the MIG dimensions was performed based 

on the adiabatic theory of HEB formation system [12]. The laminar electron beam was suggested, so the 

magnetic-field line to the emitter angle  must be  25. The initial gyrotron parameters, which were further 

used for analytical estimations, are summarized in Table1, whereas the preliminary data of MIG estimations are 

presented in Table 2. 

  Table 1.Gyrotron parameters in the interaction space. 

Wavelength       0.250 mm 

Operating magnetic field Bo    14.9 T 

Accelerating voltage Uo    30 kV 

First-anode potential Ua    12 kV 

Beam radii in the cavity Rext (external beam) 

and Rin (internal beam) for TE-15,6 mode:             1.065 mm,  0.854 mm 

          and for TE21,4 mode:  1.070 mm,  0.850 mm  

Operating beam currents Iext and Iin   1.7 A , 1.3 A 

Pitch factors g1 and g2    1.3, 1.3 

Magnetic-field line to      25 

emitter surface angle  

 



   

 Table 2.Basic design parameters of the beam shaping system. 

Cathode electric field Ec    2.36 kV/mm 

Spread of  the guiding centers in the cavity,  

Ro (for both beams)     /5 

Emitter width L (for each beam)   1.0 mm 

Current density jc (for both beams)   3.0 A/cm2 

Ratio tj of the beam current to the Langmuir  

current (for both beams)    0.25 

Magnetic field compression  

 (external and internal beams)   71.4, 69.1 

Emitter inclination  to the axis (external beam)      30 

Cathode radius Rc2 (external beam)   9.0 mm 

Anode radius Ra2 (external beam)   14.6 mm 

Emitter inclination  to the axis (internal beam) 25 

Cathode radius Rc1 (internal beam)   7.1 mm 

Anode radius Rа1 (internal beam)   13.5 mm 

     

    It is important to note that the chosen emitter width (1 mm for both beams) satisfies the mentioned two 

requirements. On the one hand, such width allows to manufacture the emitter ring using the existing technology 

(manufacturing of smaller ring is much more complicated task). On the other hand, it corresponds to the 

restriction imposed by the admissible values of the spreads of the guiding centers in the cavity. 

    5. Results of the electron trajectory analysis of a double-beam MIG 

    Second step of the MIG optimization is, as usual, the numerical simulation of the beam properties and 

optimization of the gun shape.  

    To simplify the future manufacturing of the electron gun and gyrotron itself and to make it cheaper, the 

distance from the gun to the cavity was kept close to the distance (570 mm) in the previous version of the 

double-beam gyrotron [16] operated on the second cyclotron harmonic. Besides, the shape of the second anode 

was kept the same. 

    The optimization was done using two-dimensional software EPOS [18]. The final MIG geometry is shown in 

Figure 3. The first anode is parallel to the tube axis. The beams parameters calculated according to the model 

without the initial velocity distribution (such model usually is used for the first step of the optimization) are 

shown in Table 3. Both beams have very close pitch-factors and smooth dependence of their properties on the 

operating current. 

 

    Table 3. Calculated beams parameters in the nominal regime for an anode voltage Ua = 11.73 kV 

 

internal beam external beam 

jk, A/cm2 I, A g v jk, A/cm2 I, A g v 

1.0 0.44 1.46 0.03 1.0 0.56 1.44 0.04 

1.5 0.65 1.40 0.04 1.5 0.84 1.39 0.05 

2.0 0.87 1.34 0.05 2.0 1.12 1.34 0.07 

3 1.31 1.24 0.08 3 1.68 1.24 0.10 

 

    The calculations show also that the velocity spread  v practically does not depend on any kind of the gun 

geometry deviation caused by system misalignment or thermal deformation of the electrodes for both the 

internal and external electron beams: it varies by no more than (0.3 – 1.0)%, while the pitch factor varies by 

no more than 0.12 when the longitudinal shift of the magnetic system in the interval 2 mm occurs. The 

sensitivity of the pitch-factor to the radial shift of the first anode is significantly higher, especially for the 



external beam due to the rather small anode-cathode distance and can reach 0.3. The latter effect, however, 

can easily be counterbalanced by small variations in the anode potential Ua. Due to the cylindrical form of the 

first anode the gun is not sensitive to the longitudinal shift of the first anode. 

 

Fig.3. Shape of the electrodes and trajectories of the electrons in the double-beam MIG at the first anode region. The 

anode potential is 11.73 kV. 

 

    The key points of the optimized MIG geometry (Fig.3) are given in table 4, where Z indicates the distance 

from the center of the external emitter, R – radial position. 

 

                  Table 4. Position of the key points of the MIG shape 

 

Point 

number 
1 2 3 4 5 

Z, mm 1.066 0.723 0.426 0 -0.31 

R, mm 0 0.562 0.689 0.899 0.915 

Point 

number 
6 7 8 9 10 

Z, mm -0.431 -1.0 -1 2.172 2.172 

R, mm 1.158 1.17 1.5 1.5 2.3 

 

The final stage of numerical simulation requires a more sophisticated physical model [18-20] which 

takes into account such important factors as the thermal velocities distribution and the emitter roughness that 

lead to a significant increase in the velocity spread [21]. Besides, the values of the velocity spread specified in 

Table 3 are not enough to suppress the spurious modes at the fundamental cyclotron harmonic [8]. For this a 

spread v  of about 30–40% is needed. Such values may be ensured by the corresponding manufacturing of an 

emitter with the prescribed emitter roughness r0 (Fig.4). The velocity spread increases with the emitter surface 

roughness (the corresponding formula is given in [12, 20]) and for the average roughness heights r0 = 10 and 20 

microns the velocity spread is 27% and 39%, respectively. The specified values of r0 approximately correspond 

to the maximum and the minimum admissible values of velocity spread. Therefore, in the used numerical 

simulation procedure [18] the width of the initial azimuthal velocity distribution function f(v0) was chosen to 

provide the specified values of velocity spread for low currents of the electron beams (Iin, Iext0).  

The used procedure [18] allowes to find the velocity distribution function in the cavity F(v)=dI/dv and 

thus to calculate the coefficient KR of reflection from a magnetic mirror for each beam in the operating regime. 

According to the results of the numerical simulation of HEBs with a high pitch-factor [22], in order to avoid the 

beam instabilities, it is necessary to provide KR less than 2 – 3%. For emitter roughness of 20 microns the 

reflection coefficient is too high (5 – 6%) for any current of both beams. Concurrently, for a roughness of 10 

microns in the operating regime with a current density of 3 A/cm2, the coefficient KR is small enough (1 –



 1.5%) to avoid the beam instability. Thus, one can make the conclusion that the manufacturing technique 

providing the emitter roughness of 10 microns is quite suitable for meeting the two requirements – rather high 

pitch-factor and simultaneously large enough velocity spread and a small reflection coefficient. The value of KR 

can be decreased 2 – 3 times by turning to smaller pitch-factors in both beams close to 1.2. 

  

Fig. 4. Electron beam trajectory near the cathode surface and main parameters for estimation of the velocity spread   

caused by the surface roughness. 

 

The calculations show that increasing currents in each beam shifts the function F(v) simply toward 

smaller oscillatory velocities, remaining almost Gaussian for both the internal and external beams. This 

indicates that stable HEBs are formed in the operating regimes of the MIG. 

    6. Conclusion 

    The design of the double-beam electron gun capable to provide the required beams parameters for both 

operating modes TE-15,6 and TE21,4 for the developed 1.2 THz CW gyrotron is proposed. Both analytical 

estimations of the MIG shape and further numerical optimization of its geometry were performed. The 

sensitivity of the gun to the shift of the gun in the magnetic field and small variations of the anode shape and 

anode potential are investigated. Special attention was paid to the problem of electrons reflected from the 

magnetic mirror caused by the emitter roughness. It is shown that the technique providing emitter roughness of 

about 10 microns is quite suitable to ensure both small reflection coefficient from the magnetic mirror and large 

enough pitch-factor. The designed gun can provide appropriate parameters for a CW operation of both HEBs. 

Additionally, the gun design allows to operate it in both single-beam and double-beam versions simply by 

removing or installing additional emitter on the cathode surface and exciting either TE-15,6 or TE21,4 modes (to 

keep the frequency when changing the operating mode it is necessary to replace the cavity with the one with a 

suitable radius). As a result, it is possible to realize even 4 versions of the gyrotrons having minimal, cheap and 

simple differences in its design. Such tube has essentially higher flexibility to realize the output power about 

several tens of watts at least in CW regime with an extremely high frequency close to 1.2 THz. The 

implementation of the presented project will make it possible to create a unique source for DNP/NMR 

spectroscopy and a lot of other promising applications. 
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Abstract. In this paper, the concept of a CW 1.185 THz (wavelength about 250 μm) gyrotron with 

an output power of several watts, intended for DNP/NMR spectroscopy applications is presented. 

For a 15 T magnetic field provided by a commercially available cryomagnet, the required frequency 

can be achieved by operating at the 3rd cyclotron harmonic. Under conditions of extreme density of 

the mode spectrum, we propose using interaction with an electron beam intentionally formed with a 

high (up to 40%) velocity spread as a selection mechanism. This ensures suppression of the most 

dangerous parasitic traveling modes at the first and the second cyclotron harmonics, which are very 

sensitive to the velocity spread. The main parameters of the gyrotron are determined both using the 

start currents analysis and within the framework of a non-stationary self-consistent physical model. 

The feasibility of the single-mode 3rd harmonic generation under conditions of mode competition is 

verified based on 3D PIC (particle-in-cell) simulations. The design of the triode MIG forming two 

generating beams with a quality suitable for third harmonic operation is suggested and optimized. 

The specific feature of the MIG is the possibility to form either two beams or one beam using the 

same electrode geometry and different number of emitting rings. The proposed MIG is not sensitive 

to small misalignment and reasonable manufacturing errors. It is shown that it is possible to form 

two beams with practically equal and quite high pitch-factors in all range of operating currents and 

simultaneously small enough coefficient of reflection from the magnetic mirror despite the large 

enough value of the velocity spread. 

 

 

Keywords — gyrotron; electron beam; THz radiation, harmonic excitation, velocity spread, 
mode selection, magnetron-injection electron gun, numerical simulation. 
 

1. Introduction 

     Nowadays, sources of terahertz radiation are in great demand due to their numerous scientific and 

technological applications in physics, chemistry, biology, medicine, etc. Over the last few years, there has been 

a significant progress in the development of short-wavelength gyrotrons operating at frequencies of 0.4-1 THz 

[1-5]. The maximum radiation power was achieved in fundamental-harmonic gyrotrons with pulsed magnetic 

fields [1-3]. At the same time, for continuous-wave (CW) generation in the THz band, operation at higher-order 

harmonics of the cyclotron frequency is inevitable due to the limitation to magnetic field intensity provided by 

the available state-of-the-art cryomagnets. However, high harmonic operation leads to complication of the 

problem of mode selection in gyrotron cavities, which in the THz band should be significantly oversized. 
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Currently, a number of methods aimed to improve the situation are under development, which include multi-

beam gyrotrons [4], interaction with axis-encircling rotating electron beams in the so-called large-orbit 

gyrotrons (LOGs) [5,6], the use of complex-profile [7-9] or coaxial cavities [10,11], etc. At the same time, the 

obvious disadvantages of these methods are caused by difficulties in manufacturing of sophisticated resonators 

and/or electron guns. For example, for LOGs, the formation of axis-encircling electron beams requires the use 

of specific cusp magnetic systems. Partly for this reason, operation at the 3rd cyclotron harmonic in LOGs with 

the frequency about 1 THz was realized in compact pulse coils, while CW operation with modern cryomagnets 

has been obtained only at the frequencies lower than 0.4 THz [5]. 

At the same time, the natural mechanism of parasitic mode suppression in the conventional gyrotrons is 

associated with the influence of the electron velocity spread which strongly affects the resonance conditions of 

the spurious travelling modes. However, as is well-known, the large spread deteriorates the gyrotron optimum 

efficiency significantly even for the near-cutoff modes. Thus, the electron guns are usually designed in such a 

way as to provide the spread in the orbital velocities not exceeding 15-20%. These values are insufficient for 

provision of the selective excitation of the 3rd cyclotron harmonic in conditions of an extremely dense mode 

spectrum, as the starting currents of the spurious modes remain far below that of the operating one (see below). 

Nevertheless, the situation can be quite different for higher values of the velocity spread, 30 to 40 %; here, 

besides the significant increase in the starting currents of the spurious 1st and 2nd harmonic traveling modes, the 

starting current of the operating near-cutoff 3rd harmonic mode is reduced. This latter effect [12-14] can be 

explained by the influence of “slow” electron fractions with smaller axial velocities which contribute more to 

the electron susceptibility due to two factors: first, they interact with the cavity field longer; second, these 

particles have higher transverse velocity. As a result, for near-cutoff modes, this contribution is larger than the 

negative contribution of the electrons with larger axial velocities and thus the total susceptibility is increased.  

Therefore, using an electron beam with a large velocity spread one can provide conditions when the 

excitation zone of the 3rd harmonic near-cutoff mode is not masked by zones of spurious modes excited at the 

1st and the 2nd cyclotron harmonics, assuming these latter modes are traveling. In this paper, we use such an 

approach for development of a 1.185 THz CW gyrotron intended for spectroscopic applications. In Section II, 

basic parameters of the gyrotron are determined based on an analysis of the starting currents as well as within 

the framework of a self-consistent non-stationary multimode model in which the difference in the interaction 

(transit) time for “slow” and “fast” electron fractions is taken into account. In Section III, the feasibility of 

single-mode 3rd harmonic generation is verified based on 3D PIC (particle-in-cell) simulations using CST 

STUDIO SUITE [15]. 

2. Analysis of the starting currents and estimations of the output Parameters 

In designing a gyrotron, the first thing to do is to choose an operating mode based on the parameters of the 

gyrotron cavity determined by the technological properties of state-of-the-art milling machines. These are 

capable of manufacturing relatively long (tens of millimeters) cylindrical cavities with diameters of 2 ~ 2.5 3R   

mm with a sufficient precision (inaccuracy less than 0.01  ). Since the mode competition problem becomes 

more severe with an increasing of R , the inner diameter of the cavity was chosen close to the minimum 

admissible value 2R  3 mm. For an operation at a quasi-cutoff frequency c , the condition c c R    should 

be fulfilled, where   is the eigenvalue of a ,m qTE  mode of a cylindrical waveguide. Thus, for an operating 

frequency of 1.2 THz, one should choose a mode with 37  . The above considerations allow us to propose the 

15,6TE  mode as an operating one for which the maximum value of the coupling factor is reached for a beam 

injection radius of 0.84 mm. In this case, the most “dangerous” parasitic modes are, at the 1st cyclotron 

harmonic, 6,2TE  and, at the 2nd cyclotron harmonic, 3,7TE , 1,8TE , 8,5TE ; among these, only 8,5TE  is quasi-

cutoff. 

   Calculations of the starting current were performed within the framework of the single-mode stationary model 

based on 1D hyperbolic “non-uniform string” equation [16.17] for the field amplitude and averaged over the 

cyclotron period linearized equations for the motion of the electrons. The distribution of the beam particles over 

the transverse velocities at the cavity entrance was assumed to be Gaussian with the width at the level 1e  taken 

for the velocity spread value. The operating zones of the indicated modes shown in Fig. 1 were found for the 

gyrotron cavity length of 15 mm and the following parameters of the driving electron beam: electron energy 30 

keV and mean pitch-factor 1.3. One can see that at zero velocity spread (Fig. 1a) and at the velocity spread of 

20% typical for conventional gyrotrons (Fig. 1b), there is no chance of selective excitation of the operating 3rd 



harmonic mode (blue line) with a minimum starting current of 1.5 A, due to the fact that the starting current of 

the 1st harmonic spurious mode 6,2TE  (red line) is significantly lower. At the same time, the situation becomes 

quite different for a sufficiently large velocity spread of 40% (Fig. 1c). In this case, the minimum starting 

current of the operating 15,6TE  mode is reduced to 0.5 A, while the starting current of the most “dangerous” 

fundamental harmonic mode increases significantly up to 2-2.5 A.  

 

 
 

Fig.1 Starting currents of modes interacting at the fundamental (dotted), second (dashed), and third (solid) 

cyclotron harmonics for the designed 1.2 THz CW gyrotron: (a) – zero velocity spread in the electron beam; (b) 

– 20% spread, (c) – 40% spread. The red stars show the zone where selective excitation of the operating mode 

was obtained in 3D PIC simulations. 

 

As mentioned above, this is caused by the influence of “slow” electron fractions with a longer transit time. For 

the second-harmonic spurious mode the situation is similar: the starting currents of the travelling 3,7TE  and 

1,8TE  modes increase significantly, while the excitation zone of the near-cutoff 8,5TE  mode is slightly shifted 

down as is for the operating mode. Nevertheless, one can see that for magnetic fields 14.93-14.98 T, a zone 



exists with no competing modes for the 3rd harmonic operating 15,6TE  mode. This effect can be observed for at 

least 10-15% parameter variation (that is, pitch 1.2-1.4 and length of the resonator 15-17 mm). 

   In the simulations, the following physical model has been used:  
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Here, na  is the normalized amplitude of the n-th mode ,n nm qTE  excited at the cyclotron harmonic with a number 

ns , p  is the normalized complex transverse momentum of the electrons, 4 2
||8g t     , 2

||2gZ z c    , 

||, ||,v c    are the mean values of the normalized longitudinal and transverse velocities of the electron beam 

with a velocity spread, ||g     is the mean pitch-factor,  2 4
||8 c c

n n n g n ns s         is the cyclotron 

resonance detuning for the n-th mode with a cut-off frequency c
n  in the regular part of a smoothly tapered 

gyrotron cavity, 0g eeB m c    is an unperturbed relativistic gyro-frequency, 21 eeU m c    is the relativistic 

factor, U  is the accelerating voltage, em  is the electron’s rest mass, 
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An additional analysis of the possibility of single-mode excitation at the 3rd cyclotron harmonics under the 

conditions of mode competition is carried out on the basis of a non-linear theory within which the process of 

electron-wave interaction is described by the following self-consistent system of equations (cf. [18]) are the 

normalized current parameters, bR  is an injection radius of a tubular electron beam with current bI , n  is the 

eigenvalue of the n-th mode. Function  0p  is defined as an electron transverse velocity distribution function 

(further assumed to be Gaussian), 
22 2

|| || 01g g p     , n  is the parameter of Ohmic losses proportional to 

the skin depth, functions     2 4
||8 c c c

n n n nZ Z         describe the geometrical detunings in a gyrotron cavity 

with profile  R z ,    c
n nZ c R z   . Note, that the term 2

|| ||( 4 )g p     in the motion equations permits us to 

take into account the finiteness of the particle transit time [19], which is different for different electron fractions 

of the electron beam with non-zero velocity spread. Thus, based on the developed approach, the influence of 

“slow” fractions can be directly taken into account using such non-stationary model. For comparison, the 

previous non-stationary gyrotron theory taking into account the velocity spread (see, for example, [18]) was 

developed under the assumption that the electron transit time is much shorter than the cavity decay time. 

Actually, it meant that in the simulations, the transit time was considered to be zero for all electron fractions.  

In order to introduce appropriate boundary conditions, we assume that at the input cross section 0Z  , the 

electrons are uniformly distributed over the cyclotron rotation phases    0
0 00 , 0,2

i
p Z p e


     . For the 

amplitude of electromagnetic field standard non-reflection boundary conditions can be applied on the edges of 

the interaction space (cf. [20]): 
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where 2
||2HL l c     is the normalized length of the gyrotron cavity,  0 0n n n nZ        , 

 L
n n n nZ L        . 

Based on Eqs. (2), we carry out simulations, in which the competition of the operating 3d harmonic 15,6TE  

mode with the most dangerous modes ( 6,2TE  at the 1st cyclotron harmonic and 8,5TE  at the 2nd cyclotron 

harmonic) is taken into account. The results of the simulations for the beam current of 0.7 A are presented in 

Fig.2.  

One can see that, according to both linear and non-linear analysis, for zero velocity spread, the excitation of 

the 1st harmonic travelling mode with five axial variations of the field along the gyrotron cavity (Fig.2, left 

column) takes place (radiation power is 140 W). At the same time, introduction of the large velocity spread 

allows us to successfully suppress the excitation of both parasitic modes. As a result, we obtain selective single-

mode excitation at the 3d cyclotron harmonic with one axial variation of the field (Fig.2, right column). This 

approach allows us to estimate the output radiation power which, according to the simulations, can reach 10 W.  

Note that the starting currents can also be found from Eqs. (1)-(2) by linearization and replacement of    

terms with i , where  2 4
||8 n g gs        . However, in Eq. (1) we used the parabolic dispersion 

approximation valid near the exact cutoff frequency; thus the starting currents presented in Fig.1 are more 

accurate as they are found based on exact hyperbolic dispersion equations. 

 

 
Fig.2 Results of the simulations within the framework of the averaged approach (1) for the operating current of 

0.7 A. Oscillations onset (a) and the longitudinal profile of the field amplitude in CW regime (b) for zero 

velocity spread (left column) and large spread of 40% (right column). ( 0B  = 14.92 T) 

 

3. Results of 3D PIC simulations 

The obtained results have been confirmed by the 3D PIC simulations performed using CST Studio Suite. 

Such an approach allows us to take into account the competition of all the modes in the gyrotron cavity. 

However, for an extremely high operating frequency (over 1 THz) and excitation of the 3d cyclotron harmonic, 

this requires significant computer resources compared to simulations within the framework of the averaged 

equations approach (1). For the parameters chosen above, the simulation was run with approximately 7×107 

hexahedral mesh cells. The total number of macroparticles in the interaction space reached 3×106 injected from 

128 different injection points. The simulations were carried out using a multiprocessor computer with 16 

parallel processors and 2 GPUs. Forty nanosecond long simulation (which is sufficient for the onset of a steady-

state regime) required approximately 100 hours of computational time. In general, the performed simulation 

resembles the one performed in [21]. However, unlike the simulation of gyrotrons at the fundamental harmonic 

of the gyrofrequency, the study of the interaction processes at higher cyclotron harmonics requires an increase 

in the accuracy of the calculations. Correct description of a rotating operating mode calls for a substantial 

increase in the number of cells. In addition, the analysis of gyrotron operation at higher harmonics requires a 

fairly accurate determination of the oscillatory velocity spread and, accordingly, a significantly larger number 

of macro-particles. 



The rsults of the simulations are presented in Fig.3 and 4. The conductivity of copper walls ~ 75.8 10 S/m was 

taken into account for proper calculation of the Ohmic losses. For zero spread, an excitation of the 1st harmonic 

6,2TE  mode is observed (Fig.3). At the same time, for a spread of 40%, selective excitation of 15,6TE  mode at 

the 3rd cyclotron harmonic with operating frequency of 1.185 THz takes place (Fig.4). The output power in PIC 

simulations is about 6 W, which is in a good agreement with the results obtained within the framework of the 

averaged approach. Note also that operating regimes with the power of several watts were observed for zone of 

magnetic fields from 14.93 to 14.96 T, which is close to theoretical prediction (see Fig.1c).  

 

 
Fig.3 Results of 3D PIC simulations in the case of zero velocity spread: (a) output power vs time; (b) radiation 

spectrum; (c), (d) axial and transverse field structures corresponding to an excitation of 6,2TE  mode at the 

fundamental cyclotron harmonic. ( 0B  = 14.94 T, U  = 30 kV, bI  = 0.7 A) 

 
Fig.4 The same as in Fig.3 for velocity spread of 40%, when selective excitation of 15,6TE  mode at the 3d 

cyclotron harmonic takes place.  ( 0B  = 14.94 T, U  = 30 kV, bI  = 0.7 A) 

 

 

 



4. Selection of the injection radius of the electron beam 

    The coupling factors for TE-15,6 or TE21,4 modes are presented in Figure 5. 

 

Fig. 5. Coupling of the electron beam to the eigenmodes of a cylindrical cavity vs. the electron beam injection 

radius Rbeam: TE+21,4 (harmonic number s = 3), TE-15,6 (s = 3), TE8,5(s = 2).Cavity radius Rcavity is equal to 

1.488 mm. 

 

    Below, the two versions of a gyrotron are preliminary considered: a conventional single-beam gyrotron and a 

double-beam gyrotron. In the first case, for an injection radius of 0.85 mm, the coupling factor for both 

operating modes is significantly higher than for the parasitic ones TE±8,5. In the second case, there is also the 

external helical electron beam (HEB) with a radius Rbeam = 1.07 mm. This beam has a fairly strong coupling to 

the parasitic mode. However, its usage together with the main internal HEB does not violate the selective 

excitation of the operating mode (at a reasonable value of the current of this beam) and makes it possible to 

increase the total current, allowing increasing the output power of the tube. 

5. Admissible spread of the electron beam injection 

    One of the parameters that must be known before starting the design of the MIG is the spread of the guiding 

centers in the HEB. It defines, to some extent, the electron beam current and possibility to manufacture the 

emitter ring with good enough accuracy. We estimated the minimum values of the starting currents in Ist min (B) 

curve, where B is the intensity of the magnetic field, for one of the operating modes, TE15,6, and for the main 

parasitic mode TE8,5 as a function of the thickness Rbeam of the electron beam. In these calculations, we 

considered the case of a single HEB with a radius Rbeam = 0.85 mm. 

For the simplest model with a fixed longitudinal structure of the microwave field f(z) = sin(πz/L) (where 

L is the effective length of the gyrotron cavity), in case when the electron beam has a finite thickness Rbeam, 

the starting current can be calculated using a generalization of the well-known formula [17, 22]: 

, 

, 

, 

where θ = (ω–sωc)L/v|| is the transit angle, ωc = eH0/mcγ0 is the unperturbed cyclotron frequency, 

γ0 = 1 + U0[kV]/511 is the relativistic mass factor, U0 is the accelerating voltage, Q is the quality factor of the 
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gyrotron cavity, β⊥,|| = v⊥,||/c are the normalized transverse and longitudinal velocities, μ= πgβ⊥0L/λ is the 

normalized interaction length, and λ is the radiation wavelength. 

The results of the calculation are shown in Fig. 6. 

With an increase in the HEB thickness, the minimum value of the starting current for the spurious TE8,5 

modes dramatically decreases (dashed and dash-dotted lines in the figure), and simultaneously, the starting 

current of the operating one TE-15,6 rapidly increases (Fig. 6). Thus, it seems reasonable to choose a beam 

thickness of about /5 following the compromise: on the one hand, a further decrease in the beam thickness 

does not significantly improve the situation; on the other hand, this value seems realistic from the point of view 

of the implementation of the electron-optical system. 

6. Preliminary adiabatic estimation of the MIG parameters 

    First, we consider a gyrotron based on the same magnetic system as in the project of 0.79 THz double-beam 

gyrotron operating at the second cyclotron harmonic [23]. To ensure high coupling of the two beams with RF 

field and good enough gyrotron efficiency the following HEBs parameters were chosen: Rin = 0.854 mm (0.85 

mm), Rext = 1.065 mm (1.07 mm), gin =gext = 1.3, vin =vext  30 – 40%, Iin , Iext  0.8 A. Here the indexes 

“in” and “ext” correspond to internal and external beams, respectively and the values in brackets correspond to 

the TE21,4 mode. The spreads of the guiding centers Rin and Rext should be less than /5. Here Rin, Rext are 

partial beams radii, gin, gext – pitch-factors, Iin, Iext – corresponding currents of each beam. 

The specified values of the injection radii for both operating modes are very close: the difference in 

corresponding injection radius is less than /50, i.e. 10 times smaller than the admissible value of the guiding 

centers spread. This allows to design an universal scheme of a double-beam MIG suitable for utilization in the 

same gyrotron operating at both specified above modes simply by replacing the corresponding cavity inside the 

tube (to keep the frequency value of about 1.185 THz for the operating mode TE21,4 the cavity radius must be 

equal to 1.492 mm). 

 

Fig. 6. Minimum value of the starting current Ist min as a function of the thickness of the electron beam for the 

operating mode TE-15,6 and for the parasitic one TE8,5, expressed in wavelengths /Rbeam. The same value of 

/Rbeam corresponds to different values of the magnetic field strength. 

 

Relatively low value of the accelerating (cathode) voltage U0 should be preferred in order to simplify the 

gyrotron power supply system [24]. On the other hand, to satisfy the cyclotron resonance condition: 

]T[
282

33 Hс 






  

for a fixed maximum value of the magnetic field intensity H (which is not higher than 15 T) we need to limit 

the value of the accelerating potential to approximately 32 kV. Hence, below we consider a version of the 



beam-shaping system with a total accelerating voltage of 30 kV and a maximum total beam current of 3 A (i.e. 

in the two HEBs), which are estimated to guarantee an output power of about a hundred watts at least. For a 

more flexible control of the parameters of the partial HEBs, we consider a triode scheme of the MIG with an 

anode voltage Ua ≈ 12 kV.  

   The preliminary analytical estimation of the operational regime and the MIG dimensions was performed 

based on the adiabatic theory of HEB formation system [25]. The laminar electron beam was suggested, so the 

magnetic-field line to the emitter angle  must be 25. The initial gyrotron parameters, which were further 

used for analytical estimations, are summarized in Table1, preliminary data of MIG estimations are presented in 

Table 2. 

  Table 1.Gyrotron parameters in the interaction space. 

Wavelength       0.250 mm 

Operating magnetic field Bo    14.9 T 

Accelerating voltage Uo    30 kV 

First-anode potential Ua    12 kV 

Beam  radii  in a cavity  Rext(external beam) 

and Rin (internal beam) TE-15,6 mode   1.065 mm,  0.854 mm 

     TE21,4 mode   1.070 mm,  0.850 mm  

Operating beam currents Iext and Iin   1.7 A and 1.3 A 

Pitch factors g1 and g2     1.3 

Magnetic-field line to     25 

emitter surface angle  

  Table 2.Basic design parameters of the beam shaping system. 

Cathode electric field Ec    2.36 kV/mm 

Spread of guiding centers in the cavity,  

Ro(both beams)     /5 

Emitter width L (for each beam)   1.0 mm 

Current density jc(for both beams)   3.0 A/cm2 

Ratio tjof thecurrent to the Langmuir  

current (for both beams)    0.25 

Magnetic field compression  

 (external and internal beams)   71.4 and  69.1 

Emitter inclination  to the axis (external beam)      30 

Cathode radius Rc2(external beam)   9.0 mm 

Anode radius Ra2(external beam)   14.6 mm 

Emitter inclination  to the axis (internal beam) 25 

Cathode radius Rc1(internal beam)   7.1 mm 

Anode radius Rа1(internal beam)   13.5 mm 

 

It is important to note that the chosen emitter width (1 mm for both beams) satisfies the two formulated 

above requirements. On the one hand, such width allows to manufacture the emitter ring using the existing 

technology (manufacturing of smaller ring is a much more complicated task). On the other hand, the restriction 

imposed by the admissible value of the spread of the guiding centers in the cavity is taken into account as well. 

   7. Results of the electron trajectory analysis of a double-beam MIG1 

   The second step of the MIG optimization is, as usual, the numerical simulation of the beam properties and 

optimization of the gun shape.  

                                                 
1 This section repeats almost verbatim the results of the preceding paper in this Newsletter for completeness, consistency and 

independence of both articles.   



   In order to simplify the manufacturing of the electron gun and the gyrotron tube itself and to make it cheaper, 

the distance from the gun to the cavity was kept close to the distance (570 mm) used in the previous version of 

double-beam gyrotron [23] operating on the second cyclotron harmonic. Besides, the shape of the second anode 

was preserved the same as well. 

   The optimization was done using the two-dimensional software EPOS [26]. The final MIG geometry is 

shown in Fig. 7. The first anode is parallel to the tube axis. The beams parameters calculated according to the 

model without the initial velocity distribution (such model usually is used during the first step of the 

optimization) are shown in Table 3. Both beams have very close pitch-factors and smooth dependence of their 

properties on the operating current. 

   The calculations show also that the velocity spread  v practically does not depend on any kind of the gun 

geometry deviation caused by a system misalignment or a thermal deformation of the electrodes for both the 

internal and external electron beams: it varies by no more than on (0.3 – 1.0)%. Similarly, the pitch factor 

varies by no more than 0.12 when a longitudinal shift of the magnetic system is in the range of 2 mm. The 

sensitivity of the pitch-factor to the radial shift of the first anode is significantly higher, especially for the 

external beam due to the rather small anode-cathode distance and can reach 0.3. The latter effect, however, 

can easily be counterbalanced by small variations in the anode potential Ua. Due to the cylindrical form of the 

first anode the gun is not sensitive to the longitudinal shift of the first anode. 
   

Table 3. Calculated beams parameters in the nominal regime for an anode voltage Ua = 11.73 kV 

 

internal beam external beam 

jk, A/cm2 I, A g v jk, A/cm2 I, A g v 

1.0 0.44 1.46 0.03 1.0 0.56 1.44 0.04 

1.5 0.65 1.40 0.04 1.5 0.84 1.39 0.05 

2.0 0.87 1.34 0.05 2.0 1.12 1.34 0.07 

3 1.31 1.24 0.08 3 1.68 1.24 0.10 

 

Fig.7. The shape of the electrodes and trajectories of the electrons in the first anode region of  double-beam 

MIG. The anode potential is 11.73 kV. 

   The key points of the optimized MIG geometry (Fig.7) are given in Table 4, where Z indicate the distance 

measured from the center of the external emitter, R being the radial position. 

                               Table 4. Position of the key points of the MIG shape 

Point 

number 
1 2 3 4 5 

Z, mm 1.066 0.723 0.426 0 -0.31 

R, mm 0 0.562 0.689 0.899 0.915 

Point 

number 
6 7 8 9 10 

Z, mm -0.431 -1.0 -1 2.172 2.172 

R, mm 1.158 1.17 1.5 1.5 2.3 



    The final stage of the numerical simulation has been performed using a more sophisticated physical model 

[25-27] which takes into account such important factors as the thermal velocities of the electrons and the 

roughness of the emitter surface both leading to a significant increase in the velocity spread [28]. Besides, the 

specified in Table3 values of the velocity spread are not enough to suppress the excitation of spurious modes at 

the fundamental cyclotron harmonic [29]. Such suppression is possible only at high enough values of v  

reaching 30–40%. They can be ensured by the corresponding manufacturing of the emitter with a prescribed 

(suitable) emitter roughness r0 (Fig.8). The velocity spread increases with the emitter surface roughness (the 

corresponding formula is given in [25, 26]) and for the average roughness height r0 = 10 and 20 microns the 

velocity spread is 27% and 39%, respectively. The specified values of r0 approximately correspond to the 

maximum and the minimum admissible values of the velocity spread. Therefore, in the used numerical 

simulation procedure [26] the width of the initial azimuthal velocity distribution function f(v0) was chosen to 

provide the specified values of the velocity spread for low currents of the electron beams (Iin, Iext0).  

    This procedure [26] allows to find the velocity distribution function in the cavity F(v)=dI/dv and thus to 

calculate the coefficient of reflection KR from the magnetic mirror for each beam in the operating regime. 

According to the results of numerical simulation of HEBs with high pitch-factor [30], to avoid the beam 

instabilities, it is necessary to keep KR less than 2 – 3%. For an emitter roughness of 20 microns the reflection 

coefficient is too high (5 – 6%) for any current in both beams. Concurrently, for a roughness of 10 microns in 

the operating regime with a current density of 3 A/cm2, the coefficient KR is small enough (1 – 1.5%) to avoid 

the beam instability. Thus, one can make the conclusion that the manufacturing technique providing the emitter 

roughness of 10 microns is quite suitable for meeting the two requirements, namely a rather high pitch-factor 

and simultaneously a large enough velocity spread and a small reflection coefficient. The value of KR can be 

decreased 2 – 3 times by turning to smaller pitch-factors in both beams close to 1.2. 

  

Fig. 8. Electron beam trajectory near the cathode surface and main parameters used for evaluation of the 

velocity spread caused by the surface roughness 

 

    The calculations show that increasing currents in each beam shifts the function F(v) simply toward smaller 

oscillatory velocities, remaining almost Gaussian for both the internal and external beams. This indicates that 

stable HEBs are formed in the operating regimes of the MIG. 

8. Conclusions 

 Using independent approaches, we have demonstrated the possibility of improvement of the mode selectivity 

for the case of excitation of a high-order cyclotron harmonic in THz-range gyrotrons by deliberately 

introducing an appropriate (and large enough) velocity spread in the driving electron beam. Based on these 

findings, a concept of a novel CW gyrotron capable of operation at the 3rd cyclotron harmonic with the 

frequency of about 1.2 THz has been proposed. The values of the required velocity spread were determined. 

The results of numerical simulations show that in order to suppress the spurious modes on the 1st and 2nd 

cyclotron harmonics, it is necessary to use helical electron beams with velocity spread of about 35-40%. The 

specified velocity spread can be obtained by using an emitter sponge with a suitable grain size (emitter 

roughness).  

The design of the double-beam electron gun capable of providing the required beams parameters for two 

operating modes, namely TE-15,6 and TE21,4  has been proposed. The gun design allows to operate both in single-

beam and double-beam versions simply by removing or installing additional emitter on the cathode surface. The 



roughness of the emitter can be controlled during the manufacturing of the cathode. For LaB6 cathodes, 30% or 

40% velocity spread can be obtained for the grain size of about 10 or 20 micrometer, correspondingly. 

It is worth noting that despite the fairly low efficiency, the proposed scheme of high-harmonic THz band 

generation appears to be very promising and simple in implementation. The output power of the order of 

several watts significantly exceeds the power provided by the classical electronic devices in this range (for 

example, BWOs), and is sufficient for many spectroscopic applications, including DNP/NMR spectroscopy. 
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Announcement by the organizers: “We regret to inform you that because of the significant health risks and 

transportation disruptions associated with the COVID-19 pandemic we are forced to postpone the 11th 

International Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications” until 

summer 2021. 

   We will inform you about the planned dates for the Workshop as soon as they are available. Please visit the 

website of the Workshop.  

Thank you for your interest in our Workshop and hope to see all of you in Nizhny Novgorod next summer.” 

 

 
 

 

 
The 8th International Workshop on Far-Infrared Technologies 

(IW-FIRT 2021) 

(March 8-9, 2021, University of Fukui, Fukui, Japan)  
 

The first International Workshop on Far-Infrared Technologies (IW-FIRT) was held in 1999 as a celebration 

event for establishing FIR FU, and the second IW-FIRT was held in 2002 as a part of the Fukui University 

International Congress to celebrate the 50th anniversary of our university. The third IW-FIRT was held in 2010, 

eight years after the second IW-FIRT, to commemorate the 10th anniversary of the foundation of FIR UF. The 

fourth, fifth, and sixth IW-FIRT were held in 2012, 2014, 2017, and 2019, successively, every few years. In 

these workshops it was aimed to discuss the recent developments and future directions of far-infrared and 

terahertz science and technologies with a special emphasis on high power radiation sources in this frequency 

region and their applications. We feel that it is the time to organize the next IW-FIRT to update our knowledge 

and understanding in this rapidly developing field. Therefore, we organize the 8th International Workshop on 

Far-Infrared Technologies (IW-FIRT 2021). In view of the pandemic of COVID-19 the Workshop will be 

held on 8 and 9 March 2021 online via Zoom. For more detail please visit the website of the Workshop. 

FORTHCOMING EVENTS (UPDATED ANNOUNCEMENTS) 

https://smp2020.ipfran.ru/
http://fir.u-fukui.ac.jp/IWFIRT/IWFIRT2021/index.html


 

 

 

 

 

 

 

 

 

 

 

 

SPECIAL JOURNAL ISSUES IN THE FIELD OF THZ SCIENCE 

Special Issue "Terahertz Optical Elements: Science and Technology". For more detail, please follow 

the link. 

 

Special Issue "Design, Technologies and Applications of High Power Vacuum Electronic Devices from 

Microwave to THz Band". For more detail, please follow the link. 

https://www.mdpi.com/journal/applsci/special_issues/Terahertz_Optical_Elements_Science_and_Technology
https://www.mdpi.com/journal/electronics/special_issues/DTAHPVEDMTB_electronics


 

  

 

 

Academician Professor Alexander Litvak at 80 
 

 
 

 

On November 17, 2020, Alexander Grigorievich Litvak turns 80 - an outstanding physicist, academician 

of the Russian Academy of Sciences, member of the Presidium of the Russian Academy of Sciences (RAS), 

member of the Bureau of the Physical Sciences Division of the Russian Academy of Sciences, scientific 

director of the Federal Research Center of the Institute of Applied Physics of the Russian Academy of Sciences 

(IAP RAS), Doctor of Phys.-Math. Sciences, Professor. 

In 1962, A.G. Litvak graduated from the radiophysical faculty of the Gorky State University named 

after N.I. Lobachevsky and entered graduate school under the guidance of Professor M.A. Miller. In 1967, A. 

Litvak defended his Ph.D. thesis "Some questions of the theory of nonlinear electromagnetic phenomena in 

plasma", and in 1977 - the thesis "Self-action and interaction of electromagnetic waves in plasma" for the 

degree of Doctor of Phys.-Math. Sciences. Since 1977, in the newly organized Institute of Applied Physics of 

the Academy of Sciences of the USSR, A.G. Litvak has consistently headed the sector, laboratory, and plasma 

physics department. In 1988, A.G. Litvak became the head of the Department of Plasma Physics and High 

Power Electronics, and since 2003, for 12 years, he was Director of the Institute of Applied Physics of the 

Russian Academy of Sciences, and since May 2015 a Scientific Director of the Institute. In 2016, Academician 

Alexander Litvak was awarded the title "Honorary Professor of the Lobachevsky State University of N. 

Novgorod. 

A. G. Litvak is a prominent, widely recognized specialist in the field of plasma physics, physical 

electronics and radiophysics. The scientific activity of A.G. Litvak covers a wide range of problems, such as the 

interaction of powerful electromagnetic radiation with matter, the development and creation of dense plasma 

sources, the development of microwave methods for heating of plasma in controlled thermonuclear fusion 

installations, the development of powerful microwave radiation sources and their use for creating new 

technologies. 

Already at the first stage of his scientific activity, A.G. Litvak carried out fundamental work on 

nonlinear electrodynamics of plasma and condensed matter. He formulated averaged dynamic equations for 

plasma and field, which made it possible to study from a unified standpoint the processes of self-focusing and 

stimulated scattering of electromagnetic waves in isotropic and magnetoactive plasmas, developed a theory of 

self-channeling of intense electromagnetic waves in opaque supercritical plasma, and for the first time studied 

the effects of self-action of relativistically strong waves associated with the dependence of the mass of an 

electron on the energy of vibrations in the wave field. These effects determine the nature of the interaction of 

ultra-high-power laser pulses with plasma in modern experiments aimed at developing new methods for 

accelerating particles and studying extreme states of matter. 

PERSONALIA 



In the same years, A.G. Litvak investigated a number of important effects in the field of nonlinear optics. 

He predicted the effect of thermal self-focusing and constructed its theory, formulated (together with V.I. 

Talanov) an equation of the type of a nonlinear Schrödinger equation to describe the self-action of three-

dimensional wave packets in nonlinear media, and on its basis developed the theory of modulation instability of 

non-dimensional wave packets, showed the existence of nonlinear surface polaritons - electromagnetic surface 

waves that have no linear analogue. 

A. G. Litvak has the priority of setting up complex experimental studies of the interaction of high-power 

microwave radiation with plasma. He and his colleagues were the first to experimentally discover and study the 

effects of self-focusing of waves in a plasma and nonlinear transparency of dense “supercritical” plasma, 

modulation instability of Langmuir oscillations, and dynamics of a Langmuir caviton. Their investigations of 

the nonlinear dynamics of a freely localized gas discharge in beams of electromagnetic waves laid the 

foundations for a new field of low-temperature plasma physics, extremely rich in various applications: from the 

production of beams of multiply charged ions for high-energy accelerators to the purification of the upper 

atmosphere from environmentally harmful impurities and ozone regeneration. 

In the field of controlled thermonuclear fusion, A.G. Litvak and co-authors developed the foundations of 

the theory of electron-cyclotron (EC) heating of plasma by quasi-optical beams of electromagnetic waves and 

demonstrated the possibility of plasma heating in toroidal installations when radiation is input from a weak 

magnetic field. These proposals, confirmed by experiments on the T-10 tokamak at the Kurchatov National 

Research Center, served as the basis for the widespread use of EC heating and non-induction current generation 

in modern toroidal CTS installations. 

A team of highly qualified theorists and experimenters was formed under the leadership of A.G. Litvak, 

who achieved noticeable success in the creation of powerful sources of microwave radiation and the 

development of their applications in radar, plasma physics and nuclear physics, in technologies for obtaining 

new materials. Among the most important results in this area should be noted the development and introduction 

into production of quasi-cw gyrotrons of megawatt power level. On the initiative of A.G. Litvak, the the Closed 

Joint-Stock Company "Scientific Production Enterprise 'GYCOM' (Gyrotron Complexes)" (GYCOM Ltd.) was 

established. Its high-tech production made it possible to equip about fifteen domestic and foreign tokamaks and 

stellarators with efficient EC systems based on powerful gyrotrons. At present, A.G. Litvak and his colleagues 

are completing the creation of a continuous megawatt gyrotron at a frequency of 170 GHz for the international 

ITER project and a megawatt gyrotron with a stepwise tuning of the radiation frequency in the range from 105 

to 150 GHz. Remarkable progress has been achieved in the development of sources of dense nonequilibrium 

plasma based on gyrotrons of a new generation, technologies for sintering of nanoceramic materials and high-

speed growth of polycrystalline diamond films and plates, and diamond single crystals. 

In recent years, A.G. Litvak and his co-workers have launched research on the creation and application 

of terahertz radiation sources associated both with the advancement of traditional methods of high-power 

vacuum electronics to the region of higher frequencies and with the use of detection of femtosecond laser 

pulses in nonlinear media. The possibilities of realizing the basic elements of quantum communications and 

computations based on impurity centers in solids (inorganic crystals activated by rare-earth metals, vacancy 

centers in diamond) are investigated. Qubits, quantum memory on the spectral lattice of rare-earth metal ions 

embedded in an inorganic crystal have been implemented, a new tomography method for an optically controlled 

qubit has been proposed, and the possibility of implementing three-qubit operations has been experimentally 

demonstrated. A laboratory model of an atomic clock based on coherent population trapping on rubidium vapor 

has been developed, demonstrating a stability at the level of 3 × 10-11 per 1000 sec. 

The results of A.G. Litvak's research have been published in more than 300 scientific papers, 

implemented in numerous unique instrumental and hardware complexes. His scientific achievements were 

noted in the team of authors by the USSR State Prize in Science and Technology for the cycle of works 

"Fundamentals of nonlinear dynamics of high-frequency wave processes in fully ionized plasma" (1987), the 

Russian Federation Government prize in the field of science and technology "For the development and 

development of industrial production megawatt gyrotrons for electron-cyclotron plasma heating in large-scale 

controlled thermonuclear fusion installations ”(2012), a prestigious international prize named after Kenneth 

Button, Outstanding Contribution to the Science of Electromagnetic Waves (2008). 

A.G. Litvak pays much attention to the education and training of young scientific personnel. Among his 

students there is a corresponding member of the Russian Academy of Sciences, more than 20 doctors (DSc and 

PhD). He is the founder and head of the well-known and one of the largest in Russia scientific school in the 



field of plasma physics, which includes about 30 actively working researchers many of which young scientists. 

A.G. Litvak is the organizer and the first dean of the basic faculty of the IAP RAS "Higher School of General 

and Applied Physics" at Nizhny Novgorod State University. He created the IAP RAS Scientific and 

Educational Complex, which implements an effective continuous system of training for scientific personnel for 

work in the field of physics. The complex includes specialized senior classes of physical and mathematical 

sciences 

A.G. Litvak is doing a lot of scientific and organizational work. He played a decisive role in the 

formation of the largest Branch of the IAP RAS - the Branch of Plasma Physics and High Power Electronics. 

As director of the IAP, A.G. Litvak successfully solved the problems of economic, personnel and scientific 

support and development of the institute, which, despite the difficulties of recent years, has retained its leading 

positions in world science in the field of physics of oscillatory and wave processes. He is doing a lot of work on 

the coordination of research and the establishment of effective scientific and industrial relations of the Institute 

with leading research centers and industrial enterprises of Russia. 

AG Litvak is the initiator of the organization in 2008 of the Nizhny Novgorod Scientific Center of the 

Russian Academy of Sciences, which consolidated the intellectual and technological potential of the academic 

institutions of Nizhny Novgorod. On his initiative, under the auspices of the NSC RAS in the Nizhny Novgorod 

region, activities in the field of popularizing scientific knowledge were actually revived and the Scientific and 

Educational Center "Knowledge - NN" was created. 

A.G. Litvak is a world-renowned scientist. He is the chairman and member of the program committees 

of a number of international scientific conferences and meetings, including the traditionally held IAP RAS 

conferences "Frontiers of Nonlinear Physics" and "Intense Microwave Radiation: Sources and Applications", 

which have a high international rating, a member of the editorial boards of a number of international and 

domestic scientific journals, a member of the Council of the Russian Foundation for Basic Research. In 

recognition of the merits of A.G. Litvak, he was awarded the Medal of Friendship in 2004, the Medal of Merit 

for the Fatherland, IV degree in 2010, and in 2006 he was awarded the title of Honorary Citizen of the Nizhny 

Novgorod Region. 

In 2005, Professor Litvak was a member of the International Check and Review Committee, which 

evaluated positively the research carried out at FIR UF Center during the first five years since its establishment. 

As a Director of IAP-RAS, Professor Litvak has always been an active supporter of the international 

collaboration between scientists from IAP and FIR UF Research Center.    

 

The friends and colleagues of A.G. Litvak, his numerous students and followers congratulate him 

on his 80th birthday and wish him good health and long life, as well as new remarkable achievements!  
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