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     Dear Reader, 

     We are inviting contributions to the following rubrics: 

• Research highlights (annotations) presenting the projects pursued by the members of the Consortium. 

• Short regular papers. 

• Proposals for collaborative research work. 

• News from the participating institutions. 

• Information about conferences, symposia, workshops, seminars. 

• Programs and frameworks for an exchange of visits and mobility of researchers. Job opportunities 

(especially for young researchers, e.g. postdoctoral positions, specializations, internships). 

• Annotations of books, conference proceedings, software and internet resources. Additions to the list of   

the recent scientific publications and conference reports at the website of the Consortium 

(http://fir.ufukui.ac.jp/Website_Consortium/publist.html ). 

• Information and announcements about awards and nominations. 

• Short presentations of laboratories and research groups belonging to the participating institutions. 

      Please submit your contributions to the Newsletter as well as requests for information to: 

 

Professor Toshitaka Idehara                                                                      Dr. Svilen Sabchevski 

Supervisor of International Cooperation                                                   Editor of the website and the Newsletter 

and Facilitator of the International                                                            Institute of Electronics of the Bulgarian 

Consortium                                                                                                Academy of Sciences   

FIR UF                                                                                                      IE-BAS 

idehara@fir.u-fukui.ac.jp                                                                          sabch@ie.bas.bg  
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A Successful Implementation of the Cross-Appointment Scheme at FIR UF 

 

M. Tani1, M. Glyavin2, T. Idehara3 

 
1Director of the FIR UF Center, Fukui, Japan 

2Deputy Director of the IAP-RAS, N. Novgorod, Russia 
3Supervisor of International Collaboration and Facilitator of the International Consortium 

 

    The longstanding and fruitful collaboration between IAP RAS and FIR UF started in the distant 

1999 when an agreement was signed and the first visits of IAP RAS staff to FIR UF were 

accomplished. Such common research was supported by the Visiting Professor program, and 

many researchers, including Profs. Vladimir Bratman, Vladimir Zapevalov, Mikhail Glyavin, 

Drs. Andrey Kuftin, Yuri Kalynov, Alexey Fedotov participated in such activity with a leading 

role of Prof. Toshitaka Idehara. The main goals were focused on the development and 

applications of high-power sub-THz radiation sources – Gyrotrons. As a result of the joint efforts, 

several projects were successfully finished. Among them were gyrotron based systems for 

material processing (24 GHz/3 kW/CW and 28 GHz/15 kW/ CW); large orbit gyrotron (LOG) 

with a permanent magnet system, operated at high (up to 5) cyclotron harmonics; first powerful 

CW sub-THz tube (300 GHz/ 2.5 kW/ CW - gyrotron FU CW I). At the same time, investigation 

of the advanced device such as QO-gyrorotron and peniotron was realized, modern electron-

optical systems have been developed and a detailed analysis of mode excitation has been carried 

out.  All such projects were supported by an international research team with an active 

participation of Profs. Svilen Sabchevski, Olgierd Dumbrajs, and Gregory Nusinovich. 

    In 2017, Prof. Masahiko Tani proposed and established the new system – “Cross Appointment” 

(CA) for enhancing personnel exchange of academic staff in the International Division of the 

Research Center for Development of Far-Infrared Region of the University of Fukui (see the table 

below). Under the cross-appointment system, staff members of IAP RAS are employed as a staff 

at FIR UF while his/her position is retained by the institution he/she currently belongs to, and 

he/she works for both institutions based on the employment ratio. The implementation of such 

system during the first academic year immediately demonstrated its merits: (i) increase the 

number of participants in the collaboration (including invitation of Ph.D. students); (ii) open more 

contacts between people and give a chance for young scientist to work together with other visiting 

professors at FIR UF; (iii) broaden the time horizon of the collaboration allowing the planning 

of long-term collaborative works and projects. 

    The first researcher working in the framework of the CA system was Prof. Irina Zotova  (the 

first female Visiting Professor at the FIR FU Center) followed by Prof. Naum Ginzburg, Prof. 

Andrey Savilov, Svilen Sabchevski (from IE-BAS), and Dr. Andrey Fokin. The main activities 

of their team were focused on the theoretical and experimental investigations of the novel gyro 

devices, with a goal to achieve a CW generation at frequencies above the symbolic threshold of 

1 THz. For such a purpose, several concepts were analyzed, in particular, multi-beam gyrotron, 

complex cavity gyrotron, frequency multiplication as well as the development of physical models 

and computer codes for their analysis and computer-aided design. 

     

ACCELERATING THE INTERNATIONAL COLLABORATION 



 
    

    The work carried out by the cross-appointed and visiting researchers, has been presented in an 

annual report (70 pages altogether) which includes 6 short papers, 4 reprints of selected recently 

published papers presenting the results of the collaboration, a list of 5 common reports to be 

presented at IRMM-THz 2018 Conference (Nagoya, Japan) and 6 photos (see the collage below). 

The report is available upon request from Prof. M. Glyavin.   

    We are completely satisfied with the outcome of the first year of the new CA program and 

express our gratitude to all members of the collaborative team looking forward to future 

achievements. 
 

 



 
 

High-power sub-terahertz gyrotron with a record frequency stability at up to 1 Hz 
 

Mikhail Glyavin, Andrey Fokin, German Golubiatnikov, Lev Lubyako, 

Mikhail Morozkin, Alexander Tsvetkov, and Gregory Denisov 
 

Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS),  

Nizhny Novgorod, 603950, Russia 

glyavin@appl.sci-nnov.ru 

 

Abstract: Many state-of-the-art fundamental and industrial applications require the use of terahertz radiation 

with high power and small line width. Gyrotrons as radiation sources provide the desired level of power in the 

sub-THz and THz frequency range but have substantial free-running frequency fluctuations of the order of 10−4. 

Here, we demonstrate that a precise frequency stability at high-power levels of a sub-THz gyrotron can be 

achieved by a phase-lock loop in the anode voltage control. The relative width of the frequency spectrum and the 

frequency stability obtained for a 0.263THz/100W gyrotron are 4×10−12 and 10−10, respectively, and these 

parameters are better than those demonstrated so far by other high-power sources by almost three orders of 

magnitude. Such breakthrough results confirm the potential of the realized approach and open the road to its 

implementation in the radiation sources for ultra-high precision spectroscopy as well as in the development of 

sources with large-scale radiating apertures, and other new projects. 

 

 

     In recent years, precise spectroscopy based on the high-power microwave sources becomes more and more 

actual. Microwave driven DNP experiments are now recognized as the most effective and versatile methods of 

enhancing signals in solid-state and solution NMR and imaging. DNP improves the sensitivity of NMR spectra 

by about a factor of 100, thus reducing the acquisition time in multidimensional NMR. Currently, the most 

widespread devices in the THz frequency range are backward-wave oscillators (BWOs) that provide an output 

power of a few milliwatts in the CW regime at the highest admissible frequencies with a half-power bandwidth 

of spectral distribution less than 100 mHz (a relative resolution of about 10-13). The devices based on 

multiplication of a signal from solid-state sources6 with relative linewidths of about 10-12 produce subterahertz 

and terahertz radiation at a power level from hundreds of microwatts to a milliwatt. In contrast with sources 

mentioned above, gyrotrons can produce the power higher by many orders of magnitude. 

From the theory of gyrotron operation it is well-known, that the output power and frequency depend on a number 

of parameters, including the magnetic field, the accelerating voltage, the beam current, and the electron pitch 

factor (velocity ratio); thus, the stability of the output parameters depends predominantly on the inevitable 

fluctuations caused by the high-voltage power supply. In IAP RAS experiment, the anode voltage variation was 

used as a way of frequency control and stabilization, since a low anode current reduces the power supply 

requirements and a small capacitance of the modulating anode relative to other electrodes increases the speed and 

performance of the control system. 

     The experiment on frequency stabilization was carried out using a continuous-wave (CW) gyrotron for 

spectroscopy and various media diagnostics operating at a frequency of 263 GHz and an output power of up to 1 

kW with an electron beam formed by a triode-type magnetron injection gun and having an accelerating voltage 

of 15 kV and current of 0.4 A, respectively. The gyrotron was designed for operation with, a liquid helium-free 

cryomagnet (JASTEC JMTD-10T100), at the TE5,3 mode of a cylindrical cavity. The internal mode converter 

transforms the operating mode into a Gaussian beam. A simplified experimental scheme is presented in Fig. 1. 

     The electron beam current chosen for the experiment was 0.2 A and the magnetic field was adjusted so as to 

set the output power at a level of 100 W as required by the envisaged spectroscopic technique. In the experiment, 

a phase-locked loop (PLL) method (Fig.2) has been used against the reference oscillator in order to control the 

gyrotron modulating anode voltage. A specially designed fast voltage control unit performed voltage modulation 

in a range of 1 kV with a speed better than 1 kV/µs. The voltage drop on the active element of the unit is 
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proportional to the external control signal. Preliminary testing of the control system showed a modulation 

bandwidth of 150 kHz, defined by the time constant of the modulating anode circuit. 

 

 
Fig.1. Scheme of the gyrotron and power supply connections 

 

 

Fig.2. Block diagram of the phase-locked loop units for a sub-THz gyrotron 

 

     After applying the phase-locked loop, the width of the frequency spectrum was decreased from 0.5 MHz for 

a free-running gyrotron down to 1 Hz for the stabilized gyrotron, measured at the intermediate frequency IF = 

350 MHz, which corresponds to 12/ 3*10f f   with a measurement time of a few seconds (Fig. 3). The observed 

single-sideband (SSB) phase noise in the range 10-1000 Hz demonstrates a flat dependence on the offset and 

does not exceed -60 dBc. 

     The long-term frequency drift is defined by the stability of the reference oscillator (δ f / f ~ 10−9 for the quartz 

clock employed in the experiment) and can be improved by using another reference oscillator with better 

parameters (for example, a rubidium clock with δ f / f ~ 10−12). The output power fluctuations due to a change in 

the beam pitch factor by the modulating anode voltage were less than the uncertainty of the calorimetric system, 

and are at a level of / 1%P P  .  

     In the experiment, we used the well-known principle of frequency stabilization. Although the concept of the 

stabilization scheme is similar to that employed in low-power devices such as a BWO, its realization is essentially 

different. In a BWO, the usual method of frequency control is based on the variation of the accelerating voltage, 



which for high-power devices like gyrotrons is a complex and rather slow method. The direct control of the 

cathode potential (as in a BWO) is impeded by the need to vary the parameters of the power supply with both a 

high voltage and a high current. Variation of the body voltage is slowed down by the relatively high capacitance 

of the gyrotron cavity relative to other parts; thus, such a method (Idehara, T., Mitsudo, S. & Ogawa, I. 

Development of High-Frequency, Highly Stable Gyrotrons as Millimeter to Submillimeter Wave Radiation 

Sources. IEEE Trans. Plasma Sci. 32, 910–916 (2004)) has a significantly lower bandwidth. 

 

  

Fig.3. Experimental frequency spectrum of the free running gyrotron (left) and with phase-locked loop at an 

intermediate frequency with spans of 60 Hz (right) 

 

     To conclude, a phase locking of a 263 GHz gyrotron has been achieved with an output power of 100 W and a 

linewidth of 1 Hz, defined mostly by the bandwidth of our spectrum analyzer, for a PLL control bandwidth of 

150 kHz. The technique takes advantage of the dependence of the resulting gyrotron frequency on the parameters 

of the electron beam modulated by an additional low-current anode and has no apparent limiting factors in terms 

of output power. From the point of view of the intended applications, we believe that such a spectral purity and 

low phase noise opens new prospects for using THz gyrotrons as new standard sources for spectroscopy. The 

capability of both the frequency and phase modulation of the stabilized gyrotron is appropriate also to other new 

applications, such as telecommunications and synchronization of a large number of high-power THz gyrotrons. 
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      For additional information, please see the paper:  

 

Fokin, M.Glyavin, G.Golubiatnikov, L.Lubyako, M.Morozkin, B.Movschevich, A.Tsvetkov, G.Denisov, 

“High power sub-terahertz microwave source with record frequency stability up to 1 Hz,” Scientific Reports 

8, 4317 (2018) DOI:10.1038/s41598-018-22772-1. 

 

      This Open Access paper is available at the following link: 

      

https://www.nature.com/articles/s41598-018-22772-1  
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NEXT IRMMW-THz CONFERENCE 

CONFERENCE 

For up-to-date information, registration, etc. follow the link to the website of IRMMW-THz 2018 

http://www.irmmw-thz2018.org/


      

 



 
 

 
For more information please visit the site of the conference here 

OTHER CONFERENCES 

http://tera2018.ipfran.ru/


 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Venue: Bunkyo Campus, University of Fukui (Fukui, Japan). Main conference room and poster session: On the 

13th floor of the Science Tower I (No.24 in the campus map). Workshop banquet: At the academy hall (No.11 in 

the campus map) 

 
 

For up-to-date information please visit the link. 

The International Workshops on Far-Infrared Technologies (IW-FIRT) has been held six times in the past 

from 1999 to 2017. In these workshops it was aimed to discuss the recent development and future directions 

of far-infrared and terahertz science and technologies with a special emphasis on high power radiation sources 

in this frequency region and their applications. We feel that it is the time to organize the next IW-FIRT to 

update our knowledge and understanding in this rapidly developing field. Therefore, we organize the Seventh 

International Workshop on Far-Infrared Technologies (IW-FIRT 2019). 

The workshop consists of invited talks, oral presentations and a poster session with the following scope of 

topics:  

1) Development of high power radiation sources in the far-infrared region, 

2) Application of high power terahertz technologies especially to the following topics 

  2-1) Terahertz spectroscopy, 

  2-2) Magnetic resonance phenomena in the far-infrared region,  

  2-3) Material development with high-power FIR sources, and 

3) Other subjects related to the far-infrared region. 

 

Past Workshops of IW-FIRT and DHP-TST: 

6th IW-FIRT 2017 and DHP-TST 2017, 5th IW-FIRT 2014, 4th IW-FIRT 2012, 3rd IW-FIRT 2010, and  

DHP-TST 2013. 

 

 

 

 

 

 

 

http://fir.u-fukui.ac.jp/IWFIRT/IWFIRT2019/index.html
http://fir.u-fukui.ac.jp/IWFIRT/IWFIRT2017/index.html
http://fir.u-fukui.ac.jp/IWFIRT/IWFIRT2014/index.html
http://fir.u-fukui.ac.jp/IWFIRT/IWFIRT2012/index.html
http://fir.u-fukui.ac.jp/IWFIRT/IWFIRT2010/index.html
http://fir.u-fukui.ac.jp/IWFIRT/DHPTST2013/InternationalSymposium2013Program.pdf
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     COFUC Network is a Center of Excellence (COE) in western part of Japan (Kobe・Osaka・Fukui), which 

aims to enhance the research on pulsed high magnetic field. It has been established by the Molecular Photoscience 

Research Center (Kobe University), the Center for Advanced High Magnetic Field Science (Osaka University), 

and the Research Center for Development of Far-infrared Region (University of Fukui).  

 

 
 

     The 4th Introductory Workshop for High Magnetic Field Experiments was held on 18 May 2018 at  

Machikaneyama Facility （Toyonaka Campus), Osaka University. The opening and the closing talks have been 

presented by Professor Seitaro Mitsudo from the FIR UF Research Center. The program of the workshop is 

available at the following link. 
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RECENT PROGRES ON THE DEVELOPMENT OF GYROTRONS FOR FUSION  
 

The year of the gyrotron 
     

Powerful (megawatt class) gyrotrons are being developed for electron cyclotron resonance heating (ECRH) of 

magnetically confined plasma, electron cyclotron resonance current drive (ECRCD), plasma initiation (startup) 

as well as for plasma diagnostics and stabilization in various reactors for controlled thermonuclear fusion (most 

notably for ITER and its successor DEMO). On 26 Feb, 2018 Krista Dulon posted a note in the ITER NEWSLINE 

that proclaims the current year as “The year of the gyrotron”. The rationale for this is the remarkable resent 

progress in the development of gyrotrons in the framework of the European gyrotron program, which is focused 

on the production of 1 MW prototype for the second plasma phase at ITER, where a total power of 20MW of 

injected power is required. For First Plasma in 2025, the installed ECRH system will include eight gyrotrons 

(four from Japan and four from Russia) and 4 sets of high-voltage power supplies (two from Europe and two 

from India). 

 
 

European gyrotron (1 MW prototype) for ITER (Image courtesy ITER) 

 

    The European 1 MW prototype (pictured above) operates routinely at a frequency of 170 GHz for periods of 

1000 seconds. From the Radio Frequency Building where the gyrotrons are located, the generated microwave 

beams will be transmitted through a 160 meters long microwave waveguides to launchers at the equatorial and 

upper levels of the vacuum vessel.  

    The first gyrotron units have already been completed in Japan and Russia and final testing is underway. By the 

end of 2018 factory acceptance tests will have concluded on two gyrotron units in Japan, two units in Russia, and 

power supplies in Europe. The Russian gyrotron (shown in the photo below) is installed at the gyrotron test bench 

of the Swiss Plasma Center in Lausanne, Switzerland. Equivalent to the gyrotrons manufactured in Russia for 

ITER, the production module was purchased by Europe to test upper launcher components and is available to 

other ITER partners for testing waveguide components.   

NEWS FROM THE NET (OUR BROADER HORIZONS) 

https://www.iter.org/newsline/-/2931
https://www.iter.org/img/resize-900-90/www/content/com/Lists/Stories/Attachments/2931/img_1927.jpg


    Five ITER members are participating in the procurement of the electron cyclotron system at ITER: Europe (6 

gyrotrons, 12 power supplies, 4 upper launchers), India (2 gyrotrons, 4 power supplies), Japan (8 gyrotrons, 1 

equatorial launcher), Russia (8 gyrotrons), and the United States (all transmission lines). Installation activities 

are planned to start in 2020 for the eight gyrotron units needed for ITER's First Plasma; (16 others units will be 

installed at a later assembly phase). 

 

 
 

Russian 1 MW gyrotron at Swiss Plasma Center (image courtesy ITER) 

 

    This first Russian gyrotron unit is one of two undergoing factory acceptance testing at GYCOM, in Nizhny 

Novgorod. After the tests conclude in 2018, the units will be stored until the Radio Frequency Building is ready 

to receive them. 

    The Japanese Domestic Agency will supply a total of eight gyrotron units to ITER. Contractor Toshiba has 

manufactured the two first production units, which are undergoing testing now at The National Institutes for 

Quantum and Radiological Science and Technology (QST). 

 

 
 

Japanese ITER gyrotron and its God blessing (original images courtesy ITER) 

https://www.iter.org/img/resize-900-90/www/content/com/Lists/Stories/Attachments/2931/img_1937.jpg
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In her posting, Krista Dulon tells the following interesting story: “Prior to starting the Toshiba gyrotron at QST, 

one scientist visited a local Shinto shrine to receive the blessing from the patron saint of radio frequency devices. 

The blessing is manifested in the above plaque that is kept near the gyrotron test stand at all times.” (You can 

also see it also in the left image if you look carefully.) 

 

Please visit the original article of the ITER Newsline following the link. 

 

Gyrotron power supplies pass muster in Europe 
  

The ITER Newsline of 9 April 2018 reports that the first power supply units produced in Europe for ITER's 

microwave plasma heating system have successfully passed factory acceptance tests. In ITER, 12 high voltage 

power supplies will convert grid voltage to the high voltage levels required by ITER's electron cyclotron heating 

system (ECRH). Europe, which is responsible for the supply of eight of these, has contracted with the Swiss 

company Ampegon for the design and fabrication of the equipment. Ampegon will produce eight main high 

voltage power supplies (55 kV/110 A) and 16 body power supplies (35 kV/100 mA). 

 

 
 

Factory acceptance tests of the high-voltage power supply systems (image courtesy to ITER) 

 

    The high voltage supply units are powerful indeed. The eight units alone could provide sufficient household 

electricity for a city of 270,000 inhabitants. The electricity generated by these units will feed into the ECRH, 

which is one Plasma heating of three external heating systems that will bring the ITER plasma to temperatures 

allowing for fusion to occur. The 24 gyrotrons at the core of the ECRH system will generate strong 

electromagnetic waves—not unlike a powerful microwave oven—which will be guided to the vacuum chamber, 

where they transfer their energy to the plasma particles and heat them. During the factory acceptance tests the 

power supply units exceeded expectations, according to Ferran Albajar, who is in charge of gyrotrons at the 

European Domestic Agency. The production of the remaining units will be completed in 2020. 

 

Please visit the original article of the ITER Newsline following the link. 

Please see the full report on the European Domestic Agency website. 
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Successful acceptance tests of the second Russian ITER gyrotron 

 

In the ITER Newsline of 4 June 2018, Alexander Petrov (ITER Russia) reported that in mid-May, 

factory acceptance tests were successfully carried out on the second gyrotron of the Russian 

procurement program by specialists at the Institute of Applied Physics and GYCOM Ltd. 

 

 
 

The second Russian gyrotron for ITER during the acceptance tests (image courtesy ITER) 

 
The author of the report recollects that the first gyrotron was developed at the Institute of Applied Physics 

(Russian Academy of Sciences) back in 1964, generating 6W at 10 GHz for continuous operation. Since then, 

scientists around the world have steadily increased gyrotron output power and, today, ITER needs are driving the 

program. The tests conducted on the second gyrotron manufactured in Russia demonstrated full compliance with 

ITER Organization technical requirements (1 MW power at the required 170 GHz in continuous mode). 

 

Please visit the original issue of the ITER Newsline following the link. 

 

Electromagnetic doughnuts - short bursts of electromagnetic energy propagating in free 

space at the speed of light  

 
In a recent paper by N. Papasimakis et al., published in Phys. Rev. B, the authors have proposed a metamaterials-

based scheme to realize flying electromagnetic doughnuts, a theoretical solution to Maxwell’s equations that’s 

never been achieved experimentally. Besides the well-known plane-wave solutions to the Maxwell’s equation 

there are also rather exotic solutions (obtained theoretically more than 20 years ago) in the form of short pulses 

with a toroidal, or doughnut-like, shape that would propagate in free space, and that include a strong 

electromagnetic-field component in the direction of propagation rather than transverse to it (as in the ordinary 

transverse electromagnetic waves). 

    For a popular description of the promising features of the electromagnetic doughnuts and their expected 

application please read the article “A Recipe for Flying Electromagnetic Doughnuts” by Stewart Wills, at the 

website Optics&Photonics News following the link.  
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Papasimakis N., Raybould T., Fedotov V., Tsai D., Youngs I., Zheludev N.I., “Pulse generation scheme for 

flying electromagnetic doughnuts,” Phys. Rev. B, vol. 97, n. 20 (2018) 201409. 

DOI:10.1103/PhysRevB.97.201409. 

 

The original paper is available at: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.201409  

 

Manipulating all kinds of waves by metamaterials 

 

In an article published on 5 March 2018, the scientists from Duke’s Center for Metamaterials and 

Integrated Plasmonics (CMIP) discuss a number of amazing properties of novel metamaterials 

that can be used for manipulation of various waves. They explain several projects in which such 

metamaterials are used to manipulate electromagnetic waves in the terahertz region of the 

spectrum. Among the foreseen applications are imaging devices that can identify thousands of 

plants and minerals, diagnose cancerous melanomas and predict weather patterns, simply by the 

spectrum of light they reflect. Moreover, the Duke’s researchers have shown that metamaterials 

can be used not only for manipulation of electromagnetic waves but of acoustic waves as well, 

i.e. to control the propagation of sound. The team even built a wall of such blocks carefully 

tailored to sculpt a sound wave into an arbitrarily shaped hologram, a shaped sound. 

 

Please read the original article entitled “Metamaterials bend waves of all kinds” at this link.  

 

Simple and efficient approach to the visualization of terahertz radiation 

 
Recently, L.L. Slocombe and R.A. Lewis have compared in detail two methods, namely electrical and optical, of 

detecting THz radiation using neon lamps. They are based on the fact that the terahertz radiation impinging on a 

lit neon tube causes additional ionization of the encapsulated gas. As a result, the electrical current flowing 

between the electrodes increases and the glow discharge in the tube brightens. The authors show that these dual 

phenomena suggest two distinct modes of terahertz sensing. The electrical mode simply involves measuring the 

electrical current while the optical mode involves monitoring the brightness of the weakly ionized plasma glow 

discharge. These two detection modes are compared directly under identical experimental conditions measuring 

0.1 THz radiation modulated at frequencies in the range 0.1–10 kHz, for lamp currents in the range 1–10 mA. It 

has been found that electrical detection provides a superior signal-to-noise ratio while optical detection has a 

faster response. Either method serves as the basis of a compact, robust, and inexpensive room-temperature 

detector of terahertz radiation. 

 
L.L. Slocombe, R.A. Lewis, “Electrical Versus Optical: Comparing Methods for Detecting Terahertz Radiation 

Using Neon Lamps,” Journal of Infrared, Millimeter, and Terahertz Waves (published online on 18 May 2018). 

DOI: 10.1007/s10762-018-0495-1. 

 

The original paper is available here. 

 

Plasmon Enhanced Terahertz Electron Paramagnetic Resonance — PETER 

 
A new Horizon2020 project, which is described as highly original, visionary, essential for society's needs and 

development has just been started by an international scientific consortium. With a budget of 2.89 mil. EUR the 

project will focus on the unique innovation of electron paramagnetic resonance (EPR) also known as electron 

spin resonance (ESR). The goals of the project are: (i) establishing a brand novel terahertz-frequency EPR micro-

spectroscopic technique based on a combination of plasmonic-based magnetic field enhancement and scanning 

probe microscopy; (ii) Realization of THz EPR micro-spectroscope that offers unprecedented sensitivity (several 

orders higher than conventional EPR instruments) and spatial resolution below 1 µm (approx. 1/300th of used 

wavelength).  

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.201409
https://today.duke.edu/2018/03/metamaterials-bend-waves-all-kinds
https://today.duke.edu/2018/03/metamaterials-bend-waves-all-kinds
https://link.springer.com/article/10.1007%2Fs10762-018-0495-1
https://www.peter-instruments.eu/photo-gallery/project-consortium/


    In contrast to usual THz plasmon-enhanced spectroscopy of nonmagnetic materials, the novel approach is 

based on magnetic plasmonic resonances. This presents unprecedented implementation of plasmonic phenomena 

into EPR technique. In particular, this project introduces for the first time plasmonic effects into the THz EPR. 

    It is expected that such advanced technique will open new possibilities to in-situ study of wide variety of 

materials for scientific, technological and medical purposes. 

 
For more information on the project please visit the link. 

 

Damage in a Thin Metal Film by High-Power Terahertz Radiation 

 
Researchers from the Russian Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT 

RAS) were the first in the world to conduct an experiment in which the destruction of a thin metal film was 

observed under the influence of a strong terahertz radiation with a wavelength of the order of fractions of a 

millimeter. A unique terahertz laser was used to create an electromagnetic field with an intensity of up to 100 

million volts per centimeter.  The electromagnetic waves of the terahertz range decay very rapidly in the metal, 

so it is very difficult to destroy any metal in this way. In the experiment, the researchers used a thin metal film of 

aluminum and sent single terahertz pulses to the plate, gradually increasing their power. When a certain threshold 

value is reached, a high-power pulse has made a through hole in the metal. Additionally, they have found that 

multiple irradiation with pulses with a power less than the threshold value did not penetrate the metal, however, 

cause damage, the nature of which remains to be studied. Such amazing results were observed for the first time. 

The authors believe that their results will open the way for new experimental and theoretical studies on the 

interaction of strong THz waves with different metallic materials and to new applications in photonics, biology, 

medicine, and materials science.  

 

M.B. Agranat, O.V. Chefonov, A.V. Ovchinnikov S I. Ashitkov, and V. E. Fortov, “Damage in a Thin Metal 

Film by High-Power Terahertz Radiation,” Phys. Rev. Lett., vol. 120 (2018) 085704. DOI: 

10.1103/PhysRevLett.120.085704. 

 

The above paper is available at the link. 
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