Adiabatic Approximation, Variational Method, and Hartree-Fock
Method
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I. Adiabatic approximation
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In a system with nuclei and electrons (called many-body system), the total
energy of a matter is composed of the kinetic energy of the nuclei, nuclei-
nuclei interaction, kinetic energy of electron, nuclei-electron interaction, and
electron-electron interaction, which is a many-body interaction. The
corresponding total Hamiltonian is
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Figure 1: Simple system of I, J nuclei

and i, j electrons, separated by inter-
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where N and N, are the total number of nuclei and electrons in the system,
respectively, and R and F are the positions of the nuclei and electrons,
respectively. The corresponding many-body wavefunction is ‘P(R,FI,FZ,...FN).
Since, electrons move much faster than the nuclei, then the dynamics of the
nuclei can be separated from that of electrons as shown (BO
approximation):
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The R, here is the position of the fixed nucleus.
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II. Variational Method
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In quantum mechanics, the main task to solve the Schrédinger Equation:
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This equation is exactly solvable for very small number of systems. If the
exact solution can not be obtained, the wavefunction can be approximated
by a form that is easier to handle mathematically
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In most cases, we are interested in the ground state of the system, which
we shall denote by v, which yields the ground state energy, E (here we
use E instead of E ). The excited states of the system is denoted by
{1//1,1//3,1//3...} and the corresponding energies as {EI,E3,E3...}.
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In what follows, we will be interested in obtaining an approximation to v, .
The approximate wavefunction ¢ will no longer be an eigenvalue of the
Hamiltonian operator,FI. The quality of the approximation is evaluated
based on how close the expectation value of H for v given by:

UTFTEE v OELHEZES T 2 L(CEXBND. ITNKBIREE ¢ (X, /\=)L b
—7EEF HOESETRRL RS, SELSNEINESHE. v (TS HOH
FEZRD(2)ICEDEREDITRILF—EBE (CENTIFEVWMNIEDNWTIHiicN
B

comes to the actual energy eigenvalue, E . Assuming that the eigenstates of
H form a complete basis set, we may expand any other wavefunction of the
system in terms of them. This also applies to the approximation, ¢, so we
can write the following expansion:
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where the c are the expansion coefficients. The eigenstates {‘w})} are
assumed to be orthonormal. Thus, the following property is satisfied:
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We make the further assumption that the eigenvalues, {En} are labeled in an
increasing order:
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Substituting (3) into (2), we obtain the following
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If we now substitute all E in (7) with E , we have
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We thus arrive at the central result that makes the variational method
possible and practical: Any approximation to the ground state wavefunction
will yield an expectation value of the Hamiltonian that is greater than or
equal to the ground state energy. Equality is satisfied only in the case that
the approximate wavefunction is also a ground state wavefunction.
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In practice, the approximate wavefunction is written in terms of one or more
parameters:
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The set of parameters that yield the best estimate to the ground state
energy within the limits of the chosen form of ¢ satisfies 1=
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III. Hartree and Hartree-Fock Method
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The many-body Hamiltonian for an electronic system may be written in
atomic units as:
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By Born-oppenheimer approximation:
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the first two terms are single particle operators acting on single electronic
coordinate and the last term is a electron-electron interaction acting on pairs
of electrons.
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Thus we can define the following:
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where the X, is a generalized coordinate (space and spin degrees of
freedom).
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The Hartree-Fock method is a variational, wavefunction-based approach.
Although it is a many-body technique, the approach followed is that of a

single-particle picture, i.e. the electrons are considered as occupying single-



particle orbitals making up the wavefunction. Each electron feels the
presence of the other electrons indirectly through an effective potential.
Each orbital, thus, is affected by the presence of electrons in other orbitals.
IN=BU—=TAvTEEF EDRBBEHER-AD7TO-FTHD. NEFZHEF
ETIN S7TO—FREE—NFOREDT7TIO—FTHD (DFD. BFEF
RENBAEZ BN T DE—NFEBEZEHDERBEEND) . BEFE. EEAZ
TUCHENICHMOBFOFECI O THEZRITD. LIZM>T, FMEF. it
DHMBOBFDFEICKI D THE=ND.

The starting point of the Hartree-Fock method is to write a variational
wavefunction, which is built from these single-particle orbitals. Once we
make a suitable ansatz to the wavefunction, all that is left is the application
of the variational principle. The simplest wavefunction that can be formed
from these orbitals is their direct product :
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However, the Hartree wavefunction has a very important shortcoming,
which is that it fails to satisfy antisymmetry, which states that a fermion
wavefunction changes sign under odd permutations of the electronic
variables.
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If an odd number of such permutation operators are applied to the
wavefunction, it picks up a minus sign while no change in sign occurs under
an even number of permutations. In order to satisfy the antisymmetry
condition, a more sophisticated form than that of the Hartree wavefunction
is needed.
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If, for example, we have a two-electron system with orbitals ¢ (x,) and
¢,(X,), the following variational wavefunction satisfies the antisymmetry
condition, at the same time preserving the single-particle picture.
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where c is the normalization constant. For three electrons, the equivalent
antisymmetrized wavefunction would be:
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Upon closer inspection, we notice that the same permutations of orbitals
with matching signs are obtained by the following determinant
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Generalizing this to an N-electron system where the orbitals are taken to
satisfy orthonormality, we have
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where the factor in front ensures normalization. For an arbitrary number of
electrons, the wavefunction form in (9) can be shown to satisfy the desired
antisymmetry condition. This is Slater determinant which has N! terms, each
multiplied by -1 or 1 depending on the parity of the permutation. Each term
has each orbital ¢ only once and each of the arguments X, only once. Thus,
each term may be written as follows :

ZZT. FIORFNEREZHEIRT D. EROBDEFICHUT, (9)DKENEL
EANENORMINEGZBIIT CEZRI ENTED. NiE. IBFID/KUF
« (KIS0 TENEN-1 F2E 1 ZHFTZ NHEDIEZIFOIAL 45175 TH D,
RIA(IC(F. REFUBEN 1 EIZIFHD. &8 1 EZITHD. Leh>T. RIAGR
DEIICELTENTED.

(-9, (%6, (%,)-9, (,) (10),

where the indices i ,i

L1, take values between 1 and N and the exponent of

-1 in front refers to the order of appearance of the orbital indices in the term.



The term picks up a -1 in front if the corresponding permutation is odd and
+1 if it is even. For ease of notation, we replace P(i,i,,..i, )by the shorthand
notation P(i), where i now refers to a particular arrangement (or sequence)
of the N indices. The Slater determinant may then be written as:
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A. Electronic energy for slater determinant
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To get the energy corresponding to the Slater determinant, we need to get
the expectation value of the Hamiltonian.
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Because each orbital making up the Slater determinant depends only on a
single coordinate, we can pair up those orbitals that have the same
argument and separate them into individual inner products, except for the
one that has the same argument as the operator :
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Because the orbitals are orthonormal, the inner products yield delta
functions:
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Due to the Kronecker delta all i, are equal to j, except for i . But because
all terms appear exactly once in the products, i = j is also automatically
satisfied. Thus, the sequence of indices labeled j is identical to that labeled j,
making the permutations yield identical signs. Thus , we have the following
result.
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Now, for a given sequence labeled by / and for a fixed i , there are (N-1)!
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terms in the sum. The sum over sequence index / may then be reduced to
the sum of a single index i
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Because the expectation value is an integration over the variable X , each
term yields the same result and there are N such terms. Finally we replace
the arbitrary index i by a generic index i. The final expression is:
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Next, we deal with the more complicated case of the two-particle terms. The
starting point is identical to the case of the single-body part of the
Hamiltonian where orbitals sharing the same argument are paired up into
inner products except for the ones that have the same argument as the
operator. In the case of the two-body part of the Hamiltonian there are two
such orbitals. Assuming without loss of generality that n < m we thus have:
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There are two cases for the values i and i can take as in the following.

BICE 2 DDT—ANHSD :

1. j =i and j =i
2. j =i and j =i

The first case is very similar to the situation in the treatment of the single-
body term and causes the sequences /i and j to be equal. For the second
case however, the sequences differ by a single pair, where one has i and i
interchanged. This term then picks up a minus sign. We then reduce one of
the sums over the sequences and obtain
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By similar argument used for (17), we notice that for a fixed sequence / and
for fixed i and i , there are (N — 2)! terms in the sum. We do not divide by
two because this factor is already included. We do however, make sure that
i #i because each term shows up only once in the sum. Thus,
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If n is not equal to m, for each n there are N —1 different values for m. Thus
the number of (n,m) pairs is N(N —1) and we may replace the sum over
such pairs with this factor. Finally, we replace i and i by more conventional
indices such as i and j and the two-body term reduces to
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Putting together (17) and (21), the expectation value of the Hamiltonian for

the Slater determinant is
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